"Beyond 5G" and precision timekeeping are allies Prepared for: NICT Beyond 5G open discussion (11 March 2022 JST)

Dr. Jeff A. Sherman (jeff.sherman@nist.gov) NIST // Time and Frequency Division **Boulder, CO, USA**

(image attribution: unknown, https://i.imgur.com/v4xbEz7.jpg)

All radio communication requires transmission and modulation of pure tones

Adapted from Huawei, "WDM Basics" (https://info.support.huawei.com/ta/wdmwiki/index.html#/en/basic)

Beyond 5G will likely mean:

Beyond 5G will likely mean:

1. Higher carrier frequencies, more bandwidth

Isaac Asimov (Understanding Physics, p. 130, 1993)

"... there are more high frequencies than low frequencies ..."

Beyond 5G will likely mean:

2. Coherent techniques to make better use of spectrum (e.g. beamforming, massive MIMO)

Left: REMCOM "Design and simulation of 28 GHz beamforming system and antenna array for 5G network base stations" https://www.remcom.com/examples/2019/3/19/design-and-simulation-of-28-ghz-beamforming-system-and-antenna-array-for-5g-network-base-stations

Problem: few stable, practical oscillators 100 GHz - 1 THz

Idea 1: multiply 1 GHz (microwave) sources by $n \approx 100$ Idea 2: divide 100 THz (optical or infrared) sources by $n \approx 100$

Figure: Wikimedia Commons, EM spectrum (<u>https://commons.wikimedia.org/wiki/File:EM_spectrum.svg</u>)

Problem: few stable, practical oscillators 100 GHz - 1 THz

Idea 1: multiply 1 GHz (microwave) sources by $n \approx 100$ Idea 2: divide 100 THz (optical or infrared) sources by $n \approx 100$

Frequency **division** improves *phase noise* power spectral density by $n^2 \approx 10,000!$

Figure: Wikimedia Commons, EM spectrum (<u>https://commons.wikimedia.org/wiki/File:EM_spectrum.svg</u>)

Beyond 5G may benefit from coherent division of stable infrared/optical oscillators

Figure: Wikimedia Commons, EM spectrum (<u>https://commons.wikimedia.org/wiki/File:EM_spectrum.svg</u>)

Stable oscillator? That's a clock!

Timekeeping also benefits from higher frequencies, reduced effects of phase noise.

Counter

Optical clocks forecast last century

Year - A.D.

Rough comparison of oscillator technologies

Frequency range:	10 ł
Materials:	Qua
Mode:	Acti
Stability @ 1 s average	10 -1
Cost (best available)	~ \$
Complications	Like

Left: http://lowpowerradio.blogspot.com/2017/02/Instant-AM-radio-station-hacking-1-mhz-crystal-oscillator.html Right: PTB & JILA, photo reproduced at https://www.sciencedaily.com/releases/2017/06/170629101709.htm

Microwave

kHz — 10 GHz

artz, ceramic resonators, MEMS

ive; electro-mechanical

1k USD

ely fully developed

Optical

100 THz — 500 THz

Si, fused silica (low-expansion), sapphire

Passive; laser stabilized to length

10-16

~ \$1M USD

Early in development; cryogenics, vibration sensitivity, large physical size, cost, "unique" components, etc.

Other optical oscillator schemes directly use atoms/molecules

Th Schuldt, K Döringshoff, E Kovalchuk, et al., Appl. Optics 56(4), 1101 (2017)

Accurate, bias-free, optical-to-microwave conversion (errors at 10⁻¹⁸)

microwave frequencies with 10⁻¹⁸ stability", Science **368**, 889-892 (2020).

Wide distribution model for stable/accurate frequency

........

GNSS/GPS

National standards laboratories

5G/6G networks (...mm-scale terrestrial PNT beacons?)

Evolution of the definition of frequency?

"The second is ... 9 192 631 770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the cesium-133 atom... at rest and at a temperature of 0 K."

DB Sullivan, JC Bergquist, JJ Bollinger, et al., J. Res. NIST **106**, 47–63 (2011) TP Heavner, EA Donley, Filippo Levi, et al., *Metrologia* **51**, 174–182 (2014)

- Ramsey Cavity
- **State Selection**
- **Optical Molasses**

Two leading technologies for absolute optical frequency references (errors at 10⁻¹⁸)

Single (rf-) trapped ion

Illustration: Phil Saunders. From E Cartlidge, "Toward the optical second", Opt. & Phot. (OSA) 2019 (https://www.osa-opn.org/home/articles/volume_30/february_2019/features/toward_the_optical_second/)

Optical-lattice trapped atoms

residual motional effects

higher S/N

path to low BBR uncertainty

uncanceled Stark shifts

Absolute atomic optical frequency reference Example: Yb "optical lattice" at NIST

WF McGrew, X Zhang, H Leopardi, et al., Optica 6(4) 448 (2019); plot edited to remove annotation

Photo: Nate Phillips, NIST

Recent examples from Japan (1)

[1] T Kobayashi, D Akamatsu, K Hosaka, Y Hisai, M Wada, H Inaba, T Suzuyama, F-L Hong, M Tasuda, "Demonstration of the nearly continuous operation of an ¹⁷¹Yb optical lattice clock for half a year", Metrologia 57, 065021 (2020) [2] M Pizzocaro, M Sekido, K Takefuji, et al., "Intercontinental comparison of optical atomic clocks through VLBI", Nature Physics 17, p. 223–227 (2021)

NICT: link between optical clocks (Japan/Italy)

Recent examples from Japan (2)

M Takamoto, I Ushijima, N Ohmae, T Yahagi, K Kokado, H Shinkai, H Katori, "Test of general relativity by a pair of transportable optical lattice clocks," Nat. Photonics 14, pp. 411–415 (2020).

Summary

Beyond 5G likely requires:

- Higher carrier frequencies
- Higher bandwidths
- Highly coherent transmitters (e.g. beamforming)

All these needs served by coherent-division of optical oscillators

A parallel, fascinating technology track in precision optical timekeeping exists:

- Highly stable optical oscillators
- Coherent optical-to-microwave division
- Highly accurate optical frequency references
- Motivation for redefinition of the SI unit of time
- Supports fundamental science and novel sensing

(image attribution: unknown, https://i.imgur.com/v4xbEz7.jpg)

