Beyond 5G/6G White Paper

日本語 3.0 版

国立研究開発法人情報通信研究機構（NICT）
2023 年3月
内容

第3版の公開にあたって .. i
エグゼクティブ・サマリー ... ii
第1章：はじめに ... 1
 1.1 ホワイトペーパーの背景 ... 1
 1.1.1 移動通信システムの進化 .. 1
 1.1.2 コロナ禍 .. 1
 1.1.3 次世代移動通信システムの研究開発競争 .. 2
 1.2 ホワイトペーパーの目的・位置づけ ... 2
第2章：2030年以降の未来社会 .. 4
 2.1 情報通信ネットワークと社会のあり方 ... 4
 2.2 情報通信ネットワークの変化の方向 ... 4
 2.3 サイバーフィジカルシステム(CPS)による社会課題の解決 5
 2.4 オープンプラットフォームとしての Beyond 5G/6G .. 5
 2.5 Beyond 5G/6G の機能アーキテクチャ .. 6
 2.6 フィジカル空間 ... 9
 2.7 サイバー空間 .. 10
 2.8 サービスイネーブラ ... 11
 2.9 オーケストレータ ... 12
 2.10 オーケストレータによるデジタルツイン連携 ... 13
第3章：Beyond 5G/6G 時代の未来生活 ... 16
 3.1 シナリオ1：Cybernetic Avatar Society .. 16
 3.2 シナリオ2：月面都市 ... 18
 3.3 シナリオ3：時空を超えて ... 21
 3.4 シナリオ4：サイバーワールドの光と影 .. 24
 3.5 シナリオ5：生きる道筋 ... 28
第4章：Beyond 5G/6G の実現に必要な要素技術 .. 33
 4.1 各要素技術の概要 ... 33
 4.2 主要な要素技術 ... 35
 4.2.1 テラヘルツ通信 ... 35
 4.2.2 非地上系ネットワーク(NTN) ... 37
 4.2.3 時空間同期 .. 41
 4.2.4 大容量光ファイバ .. 45
第5章：社会実装におけるテストベッド活用 ... 49
 5.1 社会実装に向けたマイグレーションパス .. 49
5.2 Beyond 5G 研究開発促進事業と共用テストベッド................................. 50
第6章: Beyond 5G/6G 関連の国際標準化動向.. 51
 6.1 ITU-R での標準化動向... 51
 6.2 3GPP での標準化動向... 52
第7章: おわりに... 55
付録1: ユースケース事例と関連する要素技術など...................................... 56
 シナリオ1: Cybernetic Avatar Society.. 56
 ユースケース事例とその実現に必要な要素技術.. 56
 シナリオ2: 月面都市.. 59
 ユースケース事例とその実現に必要な要素技術.. 59
 シナリオ3: 時空を超えて.. 63
 ユースケース事例とその実現に必要な要素技術.. 63
 シナリオ4: サイバー世界の光と影.. 66
 ユースケース事例と潜在する課題.. 66
付録2: Beyond 5G/6G の要素技術... 69
 T1 超高速・大容量通信.. 69
 T1.1 テラヘルツ通信.. 69
 T1.2 大容量光ファイバ通信... 70
 T1.3 光・電波融合... 71
 T2 超低遅延・超多数同時接続... 72
 T2.1 エッジコンピューティング.. 72
 T2.2 適応型無線アクセス.. 73
 T2.3 適応型無線アプリケーション.. 75
 T2.4 電波放射空間の自律的な局所化・追尾・予約................................... 76
 T2.5 超多段接続自律M2Mネットワーク.. 77
 T3 有無線通信・ネットワーク制御.. 78
 T3.1 ネットワーク制御(ゼロタッチ自動化).. 78
 T3.2 周波数の割当・共用管理... 79
 T3.3 自営無線システム管理(ローカル Beyond 5G).............................. 80
 T3.4 高度電波エミュレーション.. 81
 T4 無線システムの多層化—NTN.. 83
 T4.1 衛星・非地上系通信プラットフォーム.. 83
 T4.2 光衛星通信.. 84
 T4.3 海上通信.. 85
 T4.4 海中・水中通信... 86
 T4.5 多層ネットワーク連携制御.. 87
T5 時空間同期.. 89
 T5.1 無線時空間同期... 89
 T5.2 原子時計チップ... 90
 T5.3 基準時刻の生成共有.. 91
T6 超安全・信頼性... 92
 T6.1 エマージング・セキュリティ.. 92
 T6.2 実攻撃データに基づくサイバーセキュリティ... 93
 T6.3 量子暗号.. 94
 T6.4 電磁環境.. 95
 T6.5 レジリエント ICT... 96
 T6.6 センシング.. 97
T7 超臨場感・革新的アプリケーション ... 98
 T7.1 脳情報の読み取り・可視化・BMI .. 98
 T7.2 直感性の計測・伝達・保証... 99
 T7.3 リアル3Dアバター・五感伝達・XR.. 100
 T7.4 言語・非言語情報に基づくAI分析・対話.. 101
 T7.5 エッジAI行動支援 .. 102
 T7.6 多言語の同時通訳・言い換え・要約... 103
 T7.7 自動運転... 104
 T7.8 ドローン・空飛ぶクルマ ... 105
付録3：サービスイネーブラの疑似コード.. 106
謝辞... 107
第3版の公開にあたって

2021年3月にBeyond5G/6Gホワイトペーパー第1版を公開して以来、Beyond5G関連のイベントを始め、展示会、講演会、国際会議等において多くの説明と意見交換の機会を得た。特に3章のシナリオには皆様に関心を寄せていただいたが、それと同時にアーキテクチャやBeyond5Gの社会的な課題についても議論を深める必要性が明らかになってきた。そこで、NICTが内外で議論してきた内容やこれまでの活動を踏まえて、ホワイトペーパーを第3版に更新することにした。

この第3版では、次の点を中心に更新している。2章では、オーケストレータやデジタルツイン連携を中心に、アーキテクチャの概念や役割について示した。3章では、第2版での4つのシナリオに加え、5つ目のシナリオとして、地方都市で漁業関連サービスを営む移住者を描く「生きる道筋」のシナリオを追加し、5つのシナリオとした。これまで各シナリオに記載していたユースケースの詳細は付録とした。4章では、Beyond5G/6Gの要素技術について概略のみ示し、その詳細は付録とした。一方で、特にBeyond5G/6Gでの活用が期待される主要な要素技術については、新たな4.2節として、それぞれ技術解説を加えた。5章では、研究成果を社会実装する際の考え方について示した。6章には、NICTが進めているBeyond5G/6G関連の主な国際標準化活動について、最新の情報を反映させた。

このホワイトペーパーを通じて、皆様とさらに議論を深める機会が得られることを期待している。

NICT Beyond5G研究開発推進ユニット
ホワイトペーパー編集チーム
エグゼクティブ・サマリー

SDGs の達成や Society 5.0 の実現のためには次世代情報通信基盤である Beyond 5G/6G が必須である。この際、Beyond 5G/6G に求められる機能はフィジカル空間からサイバー空間に至るまで広範囲に渡ることから、各機能を適材適所で組み合わせることにより、新たなサービスの創成が期待できる。このことから、Beyond 5G/6G には多様な機能群の受け皿としてオープンなプラットフォームとしての特徴を持ち、社会インフラとして持続的に成長できる仕組みを担保することが重要である。この観点から Beyond 5G/6G の機能アーキテクチャを設計していく必要がある（図A）。

フィジカル空間では、従来の地上系モバイルネットワークだけでなく、衛星系ネットワークやマルチコア光ネットワークなどを組み合わせることで柔軟で拡張性のある通信環境が提供される。サイバー空間では、アプリケーションに応じて多様な空間が併存し、蓄積された過去データや将来の予想などの情報処理を行なう。Beyond 5G/6G 時代には、これらフィジカル空間とサイバー空間の双方において時間や空間が高度に制御され、両空間が融合することで、これまでフィジカル空間だけでは実現が出来なかったことが可能となる。融合したフィジカル空間とサイバー空間をまたいで実行可能になるサービスは、様々な社会課題の解決にも役立つことが期待される。

本ホワイトペーパーの3章では、2030年以降の社会生活をイメージした5つのシナリオについて紹介し、関連するいくつかのユースケースについては付録で紹介する。シナリオとして、アバターを高度に活用する社会を描く「Cybernetic Avatar Society」、人間活動が月まで広がった社会を描く「月面都市」、時空間同期が実現した社会を描く「時空を超えて」、サイバーお悩み相談室の診断図A Beyond 5G/6G の機能アーキテクチャ（本文中 図 2.1）
事例を描く「サイバー世界の光と影」、さらに、地方都市で漁業関連サービスを営む移住者を描く
「生きる道筋」が含まれている。それぞれのシナリオのイメージを図Bに示す。これらのシナリオに描
かれた未来社会からバックキャストすることで必要となる要素技術を洗い出すことを試み、4章の4.
1節で整理して概略を示し、詳細は付録に示す。その中で、特に4.2 節では、Beyond 5G/6G で
の活用が期待される、主要な要素技術について解説する。また、研究成果を社会実装する際の考え
方について5章に示し、NICT が進める Beyond 5G 関連の国際標準化活動の状況について6章
にまとめている。

このホワイトペーパーは、情報通信技術のエキスパート集団としての NICT が Beyond 5G/6G
世界の実現に向けて議論した結果を示したものである。今後は、これを基に多くの方々とさらに議
論を重ねていきたい。
第1章: はじめに

1.1 ホワイトペーパーの背景

1.1.1 移動通信システムの進化

2020年頃より第5世代移動通信システムの社会実装が本格化しつつあり、その活用に大きな期待が寄せられている。移動通信システムは、通信基盤（1G〜3G）、生活基盤（4G）と進化し、個々人の生活に欠くべからざる要素となり、5Gにおいてはモノのインターネット（IoT: Internet of Things）のように人だけではなくモノも繋がる社会基盤となってきた。

人と人、人とモノ、モノとモノがサイバー空間を通じて相互作用するサイバーフィジカルシステム（CPS: Cyber Physical System）が、社会生活の様々な局面において大きな意味を持つに至っている。次世代の移動通信システム（Beyond 5G/6G）においては、CPSを支える通信網が社会それ自身の神経網ともいうべきものになる。すなわち、今後、移動通信システムが中心となる通信ネットワークは社会の基盤的インフラとして機能することが期待されている。

図1.1 実空間の事象を計測（ビッグデータ）し、サイバー空間に投影し、解決策（最適解）を見い出しつつ実空間を駆動する「サイバーフィジカルシステム」の実現

1.1.2 コロナ禍

新型コロナウイルス（SARS-CoV-2）の世界的流行（パンデミック）を受け、各国政府では、感染抑制のため、人と人が直接出会う機会を極力減らすようロックダウン等によって対応している。エッセンシャルワーカーを除く多くの人々は在宅勤務を行うことが推奨されるなど、新しい働き方に向けた取り組みが急速に取り入れられてきた。

在宅勤務においては、サイバー空間を通して個々人がつながることが出来るため、ある程度の経済活動の継続はできるが、一方で現在の情報通信技術（ICT: Information and Communication Technology）の力不足も認識される事態となっている。

サイバー空間を通じた経済活動等では、これまでの様にリアルな時間や空間に制約されないことが利点として見出され、新たな活動のあり方として認識されている。
1.1.3 次世代移動通信システムの研究開発競争

社会の基盤的インフラとして、通信ネットワークの存在価値は極めて大きく、ビジネスのゲームチェンジや将来の安全保障の観点からも大きな注目が集まり、次世代移動通信システムの覇権を握ろうとする動きが加速している。

このような背景から、Beyond 5G/6Gに関する関心が、これまでの世代の切り替わり時点に比べ、大変高まって来ており、その研究開発をどのように進めるか等の議論が巻き起こっている。先陣を争う様に、ホワイトペーパーが様々な機関から出版され、フォーラム等の設立も行われ、研究開発投資が始ままりつつある（本章末「参考：様々なホワイトペーパー・コンソーシアム等」参照）。

1.2 ホワイトペーパーの目的・位置づけ

このホワイトペーパーは、情報通信技術のエキスパート集団としての NICT が Beyond 5G/6G 世界の実現に向けて検討を行ったものである。

2030 年以降の社会生活をイメージした「Cybernetic Avatar Society」、「月面都市」、「時空を超えて」、「サイバー世界の光と影」、に加えて「生きる道筋」の5つのシナリオを作り、これらのシナリオに描かれた未来社会からバックキャストすることで必要な要素技術を洗い出すことを試みた。

それぞれのシナリオとそこに登場するユースケースを示し（3章）、それらを実現するための要素技術（4章）を整理し、特に Beyond 5G/6G での活用が期待される主要な要素技術について解説する。さらに、研究成果を社会実装する際の考え方に（5章）、Beyond 5G 関連の標準化関連の活動動向（6章）をまとめている。このホワイトペーパーに描かれている社会生活を実現するために必要な未来技術を開発・実装して利用するには、NICT のみならず様々なステークホルダーの皆様と議論を重ねて目標を具体的に設定し、その目標を実現するという活動が必要であることは言うまでもない。このため、このホワイトペーパーを基に多くの皆様と議論を重ねて行き、議論の進展に合わせてホワイトペーパーをさらに随時改定する予定である。
＜参考：様々なホワイトペーパー・コンソーシアム等＞

（1）Beyond 5G/6G ホワイトペーパー等
● 総務省 Beyond 5G 推進戦略懇談会
● NTT の「IOWN」構想
https://www.rd.ntt/iown/
● DoCoMo の「ドコモ 6G ホワイトペーパー」
https://www.nttdocomo.co.jp/corporate/technology/whitepaper_6g/
● KDDI の「Beyond 5G/6G ホワイトペーパー」
https://www.kddi-research.jp/tech/whitepaper_b5g_6g/
● NEC の「Beyond 5G ビジョンホワイトペーパー」
https://jpn.nec.com/nsp/5g/beyond5g/pdf/NEC_B5G_WhitePaper_1.0.pdf
● Samsung の「The Next Hyper---Connected Experience for All」
● Oulu 大学 「6G channel」
https://www.6gchannel.com/6g-white-papers/

（2）コンソーシアム等
● Beyond 5G 推進コンソーシアム
https://b5g.jp
● Beyond 5G 新経営戦略センター
https://b5gnbsc.jp/
● NEXT G ALLIANCE
https://nextgalliance.org/
● Hexa-X
https://hexa-x.eu/
● The 5G Infrastructure Public Private Partnership (5G-PPP)
https://5g-ppp.eu/
第2章：2030年以降の未来社会

2.1 情報通信ネットワークと社会のあり方

現在の日本には少子高齢化をはじめ、都市部への人口集中に伴う都市と地方の格差問題などの多くの社会課題があり、その分野は多様化している。多様化した社会課題の例として子育てとキャリアの両立、家族の経済力による教育格差、画一的かつ受動的な教育による没個性化、不健康長寿に依る社会保障費の増大や介護疲れなどが挙げられる。また、情報通信業界に限らず、居住地や身体制約による雇用制限や個人の努力・成果が外的要因によって報われない組織構造などから、産業における閉塞感が生じている。

Beyond 5G/6G 時代には情報通信ネットワークの革新により、これらの社会課題を解決し、次のような「人間中心の強靭で活力のある社会」を実現することが期待されている。

①あらゆる場所で、都市と地方、国境、年齢、障害の有無、といった様々な壁・差異を取り除き、誰もが活躍できる社会、（包摂性）
②社会的なロスがない、便利で持続的に成長する社会、（持続可能性）
③不測の事態が発生しても、安心・安全が確保され、信頼の絆が揺るがない人間中心の社会、（高信頼性）

これらの社会の実現には、社会課題を解決する新たな価値を持つサービスを創生するため、各産業や事業者が柔軟に連携し、適切な役割分担のもと一体となって活躍していく環境が求められ、そのためには、技術の融合や業種を越えた連携を促進していくBeyond 5G/6G による情報通信ネットワークを基盤とした仕組みの確立が必要である。

2.2 情報通信ネットワークの変化の方向

Beyond 5G/6G 時代には情報通信ネットワークを通じて、現実世界を計測し、その結果をビッグデータとして集約すること、さらにビッグデータをサイバー空間において解析し、その結果に基づいて様々なアクチュエーターを用いて現実世界を駆動すること、即ち CPS（Cyber Physical Systems）が、社会活動の様々な場面で活用されて行くことになると考えられている。

また、社会活動を支える様々なインフラやソースは、集中から分散へ、独占から共用・共有（シェアリング）へと、その利用形態が大きく変化すると考えられ、すでにいくつかの実施例も出てきている。いわゆる共有経済（シェアリング・エコノミー）と言われるもので、交通機関におけるカーシェアリング、労働環境におけるワークシェアリング、金融におけるクラウドファンディングなどがその具体例になる。情報通信ネットワークのあり方もこの流れに沿って大きく変化する可能性がある。

例えば、ネットワークの SDN（Software-Defined Networking）化、即ちネットワーク仮想化がこれまでにも増して推し進められ、ハードウェアのオープン化が進展すると考えられる。さらに、より複雑化した移動通信システムの制御にはAI（Artificial Intelligence）技術や、機械学習（ML: Machine Learning）技術などが適用されて行くことになると考えられる。ネットワーク仮想化やハードウェアのオープン化はネットワーク装置だけではなく、端末側にも波及するであ
ろう。
通信ネットワークの形態として、これまでは個別のネットワークであった移動通信システムを含む地上系の情報通信ネットワークや宇宙航空領域における非地上系ネットワーク（NTN: Non-Terrestrial Networks）は、双方から歩み寄って融合して利用されて行き、新しい構成要素となる高高度基盤ステーション（HAPS: High Altitude Platform Station）やドローンなども普及すると考えられ、いずれは、空飛ぶクルマの利用も日常的に行われると考えられる。
一方で、電波資源についてはミリ波帯からテラヘルツ帯までもが開拓され、電波を縦横無尽に駆使することが求められ、これらの電波の特性を生かした使い方やアプリケーションなどが普及することが想定される。情報通信ネットワークが扱うリソースは、電波に限らず、電力、計算機、空間など非常に幅広い。これらのリソースの適切な利用は、社会システム全体の課題として、共有経済の中で一体として議論されていくと考えられる。

2.3 サイバーフィジカルシステム（CPS）による社会課題の解決
2.1 節で述べたように、Beyond 5G/6G の技術進展によって、解決を目指すべき社会課題は多岐の分野に渡る。このため、取り扱う空間をフィジカル空間からサイバー空間にまで拡張することにより、「時間と空間」、「身体」、「脳」など、従来の常識では超えることが容易ではないと考えられていた限界を開放し、いわゆる人間拡張を具体化することにより、新たに多くの社会課題を解決していくことが可能になると考えられる。そのためには、CPS に基づき、サイバー空間とフィジカル空間をこえてサービスを実行することができる Beyond 5G/6G の仕組みが期待されている。
CPS を活用すれば、通信機器、周波数、空間、時間などのリソースをこれまで以上にダイナミックに扱うことができ、新たな技術による個別のシステムの高度化や効率化だけでなく、業種をまたいで社会全体の最適化を図ることができる。例えば、CPS を活用することによる無線通信機器の電源管理や交通経路の制御などを通してカーボンニュートラルを推進するなど、広い分野の社会課題の解決につながる。

2.4 オープンプラットフォームとしての Beyond 5G/6G
Beyond 5G/6G が社会課題を解決するためのインフラとして活用される場合、多種多様なプレーヤが業種を超えてこのインフラに参画する必要がある。そのためには、業界間に関わらずの仕組みでは、プレーヤが有機的に連携することが困難であり、参画にも高い障壁がある。そこで、Beyond 5G/6G は、そのようなプレーヤの参画を促すための仕組みとして、オープンプラットフォームとしての特徴を持ち、全員参加型の社会基盤と捉えて設計していくことが重要である。
システム構築の観点からは、Beyond 5G/6G がフィジカル空間における通信の高度化から、サイバー空間における計算領域の拡大に至るまで、広範囲の機能を扱うことになる。しかも、それらの機能はフィジカル空間とサイバー空間をまたいで有機的に融合されて動作することを担保しなければならない。一方で、様々な社会課題を扱うサービスの開発は、必ずしも通信システムや情報処理の専門家ではない利用者が行う必要性が増加していくことから、ますます複雑化する機能の
全体像を理解することは困難である。
そこで、Beyond 5G/6G の各機能を適切に定義して責任分界点を明確にし、個別の機能をパズルのピースとして Beyond 5G/6G の全体システムに投入できるようにしたい。実現するサービスにおいては必ずしも全ての機能をフル活用する必要はなく、適材適所の機能を「良いところ取り」して自在に組み合わせ活用することも求められる。
Beyond 5G/6G がオープンなプラットフォームになることにより、サービスの開発者や利用者、通信機器の開発者や運用者、アルゴリズム提供者等の各プレーヤが安心して Beyond 5G/6G の機能拡張に貢献でき、Beyond 5G/6G が社会インフラとして持続的に成長することを期待する。

2.5 Beyond 5G/6G の機能アーキテクチャ
Beyond 5G/6G では、現実世界であるフィジカル空間と計算機上に実現されたサイバー空間が CPS として融合し、これを活用したサービスである CPS サービスが実現される。CPS のフィジカル空間とサイバー空間は、様々なプレーヤが展開する機能から構成され、フィジカル空間のセンシング情報はサイバー空間に提供され、サイバー空間はその情報を一元的に管理・分析・連携させてフィジカル空間をアクチュエートする。CPS サービスは、サービスイーネプラを介して CPS を利用する。また、フィジカル空間とサイバー空間の各システム・機能は、オーケストレータを介して一体化的なポリシーに基づいて調和され、CPS サービスが利用可能となるように提供される。以上の関係を示した Beyond 5G/6G の機能アーキテクチャを図 2.1 に示す。

図 2.1 Beyond 5G/6G の機能アーキテクチャ
フィジカル空間は、従来の地上系モバイル通信システムの概念が広がり、ローカル 5G をはじめとする自営系のシステム等が取り込まれる。上空では、宇宙通信システムや非地上系モバイル通信システムにより、通信エリアを上空方向にエリア拡張するほか、山間部や海洋にもエリア拡張する。それらの無線通信システムは、大容量で低遅延な光通信ネットワークが支える。これらの各システムは、既存のものや新規のものにより複数の同種システムが組み合わされて展開される。例えば、地上では複数の管理主体のシステムが展開され、宇宙では複数の管理主体の衛星通信システムが展開される。それらのシステムは異なる特徴を持つため、サービスに応じて適切なシステムを選択することになる。

一方、サイバー空間では、フィジカル空間の様々な分野の情報を一元的に扱うことになる。これにより、単一種類の情報からでは分析し得ない事象の把握やそれに基づく制御を行うことが可能になる。サイバー空間に必要な機能を適切に位置づけるため、データレイヤ、分析レイヤ、アプリケーションレイヤから構成される機能モデルを定義した。サイバー空間も多様な機能から構成されるが、必要に応じて新たな機能を投入し、共通的あるいは限定期に活用される。サイバー空間で扱っている情報は、その部分集合を活用してデジタルツインやメタバースなどの概念に基づく複数のインスタンスが生成され、サービスに利用される。

CPS サービスは、フィジカル空間とサイバー空間をこえて実行されるサービスである。例としてスマートシティの場合、街中の交通情報や人流・気象のセンシング情報、地上系モバイル通信システムの周波数利用情報、光通信ネットワークの通信量情報などをサイバー空間で分析することにより、大規模イベント開催における適切なモバイル通信帯域の管理、適切な交通誘導、豪雨時の河川管理、などを可能にする。CPS サービスの例としては、他にもスマート工場やエンターテイメントなど、様々に考えられる。

このような CPS サービスは多様な分野に広がるため、必ずしも情報通信分野に限定されない視点で開発されることになる。多様な CPS サービスを開発するプレイヤが、フィジカル空間やサイバースペースを支えるシステムや機能をブラックボックスと考え、CPS サービスを自在に開発できる仕組みが提供される。そのための機能として、このアーキテクチャではサービスイネーブラとオーケストレータを定義している。

サービスイネーブラは、CPS サービスがフィジカル空間とサイバー空間をこえて実行することを可能にするために、CPS サービスの要求を受け取り、フィジカル空間とサイバー空間のシステムを制御する処理に翻訳して、オーケストレータを介して両空間を利用するための初期化を行い、CPS サービスが CPS の機能を利用できるようにする。CPS サービスの実行中も、サービスイネーブラは継続して CPS の最適化を行う。

オーケストレータは、CPS サービスが必要とする動作を可能にするため、フィジカル空間とサイバースペース内の各システムを初期化することともに、CPS サービスの実行中は継続して各システムの最適化を行い、フィジカル空間とサイバースペースを構成する各システムは、システム間連携や利用者のサービス展開において、それぞれのポリシーを持つ。従って、オーケストレータは、各システムの利用可否やその組み合わせについて、利用の調停を行う。
図2.2は、Beyond 5Gシステムがあらゆるシステムの集合体として構成される概念を示したものである。利用者が要求するサービスを実現するためには、業種をまたいで複数のシステムを組み合わせ、適切に設定できることが必要である。ここでは、地上系移動通信システム、HAPS、衛星通信システム、メタバース、デジタルツインの各業種が描かれているが、それぞれの業種には複数の事業者が存在する。従って、同一業種から一つあるいは複数のシステムが提供される。また、サービスを構成するために複数の業種がシステムを提供する。

これを実現するためには、利用者の要求するサービスに応じてシステムを発見・選択・設定するなど、システムをまたいで調整役が必要である。図2.2ではこれをオーケストレータと示しており、オーケストレータは各システムと共通のインターフェイスによりやりとりを行う。また、利用者にとってはこのような複雑なシステムを直接扱うことは不可能であるため、その仲介役としてサービスイネーブラが存在する。サービスイネーブラは、利用者とサービスレベルの要求を交換するインターフェイスを保つとともに、それをブレークダウンしてオーケストレータに受け渡していく。このような概念をBeyond 5Gのアーキテクチャとして定義し、必要な機能やインターフェイスを具体化していく作業が必要となる。

このようなBeyond 5Gシステムの概念により、既存のプレーヤーや事業者が容易にプラットフォームに接続することが可能となり、例えば、自社事業の余剰能力を開放し、インセンティブを獲得することも可能となる。また、業界を超えたオーケストレータやサービスイネーブラが登場することにより、参入障壁を下げることにもつながる。このプラットフォームに持たれた多種多様なソースを寄せ集めることにより、新しいサービスを提供することが可能となる。このプラットフォームにより、つながる企業や事業者が増えれば増えるほど、提供されるサービスや機能の組み合わせはますます増えることになり、新しいサービスが増加することになる。以下の各節では、フィジカル空間、サイバースペース、サービスイネーブラ、オーケストレータについて、具体的に説明する。

図2.2 あらゆるシステムの集合体としてのBeyond 5Gの概念
2.6 フィジカル空間

フィジカル空間では、従来のようなスマートフォンを中心としたモバイル通信事業者が構築する公衆移動通信システムだけでなく、ローカル5G／6G、テラヘルツ波を用いる次世代無線 LAN、専用通信システムなどの自営無線システム、HAPS や人工衛星のような非地上系ネットワークシステムのリソースがシームレスに繋がるように結合して扱われる。CPS サービス提供のため、通信事業者やインターネットサービス事業者による次世代光ネットワークを用いたデータネットワークやクラウドサービス事業者によるデータセンターやエッジ、クラウドのリソースが一体になる。

低軌道衛星（LEO）や中軌道衛星（MEO）などの非静止軌道衛星（NGSO）は互いに協調して動くようになり、静止軌道衛星（GEO）と共存する。共存のなかで、電波と光波が、地上局と衛星群や HAPS 群を繋ぐフィーダリンクやユーザリンクに使われ、また、衛星群と HAPS 群の間を通信する衛星間リンクとして使われる。

次世代の光ネットワークは、移動通信システムやデータネットワーク、エッジコンピューティングの機器間、さらには、NTN の基地局やゲートウェイを相互に接続するリンクにマルチコア光ファイバなど大容量通信できるインフラが敷設される。

地上系ネットワークと非地上系ネットワークのシームレスな統合は、オーケストレーション機能による柔軟なリソース結合によって実現される。オーケストレーション機能に、さまざまな事業者が備える特長あるリソースを柔軟に組み合わせる機能を含ませることにより、CPS サービスに対してその要求にミートする最適な通信環境が提供される。こうして、ユーザの意図がどこでも（上空、海洋、都市、遠隔地）、いつでも（日常、災害時）、充足されるようになる。

図 2.3 フィジカル空間
2.7 サイバー空間
サイバー空間には、フィジカル空間からのリアルタイムなデータ取得とサイバー空間からの情報フィードバックを可能にする高度な接続性と、インテリジェントなデータ管理や AI 分析を可能にする計算能力が求められる。サイバー空間は、現在、主にデバイス等のオペレーションをモニタすることに使われているが、今後は、スマートシティから人間まで実世界のエンティティをデジタルで表現するデジタルツインの構築と、それらのインタラクションをシミュレーションし予測することに使われ、さらにビジネスフローや社会システムの自律的な最適化へと進化していくと考えられる。
サイバー空間は、データレイヤ、分析レイヤ、アプリケーションレイヤの 3 つのレイヤから構成される。データレイヤでは、IoT ハブがフィジカル空間のシステムやデバイスとの間でデータをやり取りしながら情報を抽出・変換し一元管理し、デジタルツインにマッピングする。分析レイヤでは、それらの情報を分析することにより将来の事象を認識・発見・予測し、シミュレーションにより検証する。アプリケーションレイヤでは、予測結果に基づいて CPS サービスを連携させ、システムやサービスの最適化を行う。
これらの機能要素が B5G/6G の大容量・低遅延・超多様なデータストリームに対応することに加え、フィジカル空間を含む CPS 全体のリアルタイム制御や同期制御、信頼性保証も重要になる。さらに、現在、広く活用されている Web サービスなどとの連携も行えるようになる必要がある。
サイバー空間では、個々のフィジカル空間のリアルな再現だけでなく、様々な CPS サービスのシナリオに応じたサブ空間に重なって再現され、予測に基づきフィジカル空間の最適な制御を行う。この際、サイバー空間では現実とは異なる時間軸や現実に実証が困難なシナリオで検証を行うことも可能となる。
2.8 サービスイネーブラ

サービスイネーブラは、CPS サービスがフィジカル空間とサイバー空間をこえて実行することを可能にする機能である。サービスイネーブラには様々な実現方法が考えられるが、本節ではその一形態として、サービスイネーブラがサービスを構成するアプリケーションのミドルレイヤとして実装されることを想定し、Beyond 5G/6G の全体システムにおける役割を示す。サービスイネーブラの実現方法、機能、インタフェイスについては、今後さらに議論を深める必要がある。

サービスイネーブラは、CPS サービスから CPS の利用要求を受け取り、フィジカル空間とサイバー空間のシステムを制御するための処理単位に分解してオーケストレータに伝え、オーケストレータは必要な機能や性能を満たすようにフィジカル空間とサイバー空間のシステムや機能を組み合わせて、CPS サービスが CPS を利用するための初期化を行う。また、サービスイネーブラは、CPS サービスの実行中も継続して CPS の最適化を行う。

サービスイネーブラが CPS サービスの機能要求を仲介することにより、CPS サービスがフィジカル空間とサイバー空間で実現可能な複雑な機能を直接扱う必要が無くなる。CPS サービスのプロバイダは、利用者主体の観点で整理されたサービスイネーブラを扱うことだけに着目すれば良い。サービスイネーブラの実現方法としては、例えば、OS のミドルウェアやドライバ等として実装される方法や、外部サーバの機能として実装される方法などが考えられる。

サービスイネーブラの例を表 2.1 に示す。サービスイネーブラのカテゴリとして、「最適制御」、「通信資源」、「時空間同期」、「セキュリティ」などが挙げられる。「最適制御」のカテゴリには、「飛行衝突防止」、「超臨場感共有」などの個別機能が考えられる。このようなサービスイネーブラは、必要に応じて追加され、適切なアクセス制御を行いながら複数の利用者に開放することが望ましい。

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>個別機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>最適制御</td>
<td>飛行衝突防止、超臨場感共有、人流交通分析</td>
</tr>
<tr>
<td>通信資源</td>
<td>通信品質自律制御、上空エリア拡張、海洋エリア拡張、広域センサ情報収集</td>
</tr>
<tr>
<td>時空間同期</td>
<td>高精度位置同定、多地点アバターVR 作業、端末位置捜索</td>
</tr>
<tr>
<td>セキュリティ</td>
<td>アバター本人認証、データトレーサビリティ</td>
</tr>
</tbody>
</table>

CPS サービスの例として、多数地点から遠隔操作するロボットの協調作業を挙げる。この場合、各地点からの通信遅延が異なるためにロボットの連携がスムーズにできない問題が考えられるが、遅延を補償した VR により各作業者が適切に操作を可能とするサービスイネーブラ「多地点アバターVR 作業」を活用する。サービスイネーブラを用いない場合は、CPS サービスの開発者が通信遅延を補償するアルゴリズムを考案して実装する必要があるが、サービスイネーブラを利用すれば共
通機能として容易に CPS を活用できる。

他の例としてドローンの飛行を挙げる。CPS サービスの開発者は「飛行衝突防止」というサービスイネーブラを利用し、サービスイネーブラに対してドローンの目的地を設定すれば、他の飛行物体との衝突を回避するように飛行を制御する。CPS サービスの開発者は、自らフィジカル空間のセンサから情報を取得し、他の飛行物体と衝突しないように自己プログラミングする必要はない。

このように、サービスイネーブラは CPS サービスを実装する立場から、Beyond 5G/6G を成

成する複雑なシステムを容易に扱うことを可能とする。

なお、CPS サービスがサービスイネーブラを利用する際に API を利用することを想定し、CPS サービスを実装する疑似的なプログラミングコードを付録3に示す。

2.9 オーケストレータ

オーケストレータは、サービスイネーブラから受け取る CPS サービスの利用要求に基づき、CPS サービスの実行に必要な処理をフィジカル空間とサイバー空間の各システムに対して行う機能である。オーケストレータは、サービスイネーブラと同様に様々な実現方法が考えられるため、今後の議論を深める必要がある。本節では、オーケストレータが各システムとの通信インターフェイスを持つ管理装置であることを想定して、以下の説明を行う。

オーケストレータは、CPS を構成する全てのシステムの中から、要求された機能を実現するためのシステムを選択し、CPS サービスが一体としてシステムを利用して利用できるように組み合わせて初期化する。また、CPS サービスの実行中は継続して各システムの最適化を行う。

この際、フィジカル空間とサイバー空間を構成する各システムは、システム間連携や利用者へのサービス展開において、それぞれのポリシーを持つ。従って、オーケストレータは、各システムの利用可否やその組み合わせについて、利用の調停を行う。

フィジカル空間とサイバー空間の各システムは、そのシステムに基づいて適切に運用するための管理機能を持ち、その運用に責任を持っている。各システムは、自主的運行に加えてオーケストレータとの対外的なインターフェイスを持つ。この際、各システムは、その時点での利用可能リソースや接続ポリシーなど、観点から調停に応じる条件が異なる。従って、オーケストレータはシステム全体の観点から個別のシステムとの調停を試みるが、必ずしもその通りになるとは限らない。システムによっては、オーケストレータからの調停にかかわらず、当該の CPS サービスに向けては選択されない場合もある。つまり、オーケストレータが全てのシステムの利用を一元的に管理しているわけではない。各システムは運用の自主性を確保しており、オーケストレータとのインターフェイスはその交渉に応じるための連絡手段である。

このようにして、CPS サービスの実行を可能にするために、フィジカル空間とサイバー空間の各システムから適切な組み合わせが選択されるが、個別の CPS サービスに対して、その都度、選択されたシステム群が構成されていく。
なお、オーケストレータにはシステム全体の観点から調停を行う様々な機能が実装される。その一例を表2.2に示すが、Beyond 5G/6Gの成長の過程でこれら機能が柔軟に更新されることが重要である。また、オーケストレータは全体システムの調停役であるから、Beyond 5G/6Gが社会インフラとしての役割を果たす上で問題のある処理を排除するとともに、運用において性能ボトルネックや障害ポイントを生じさせないような機能の検討や実装上の工夫が必要である。

次の節では、表2.2で示したデジタルツイン連携について具体的に示す。

表2.2 オーケストレータの機能の例

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>個別機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>最適制御</td>
<td>デジタルツイン連携、AI/ML分散処理、低消費電力制御</td>
</tr>
<tr>
<td>自律制御</td>
<td>ゼロタッチ構成管理、自動障害復旧、災害時通信制御</td>
</tr>
<tr>
<td>通信資源管理</td>
<td>周波数資源管理、通信品質管理</td>
</tr>
<tr>
<td>計算資源管理</td>
<td>エッジコンピューティング資源管理、遅延補償遠隔操作</td>
</tr>
</tbody>
</table>

2.10 オーケストレータによるデジタルツイン連携

デジタルツインはフィジカル空間の実体（デバイス、オブジェクト、人間など）の仮想的な“双子”（モデル）をサイバー空間に作成し、モデリングやシミュレーション解析によって、その状態や振る舞いをシミュレーションし、反映させることを目的としている。デジタルツインは、物理的実体と周囲のデジタルツインからのリアルタイムな更新により、物理世界で何が起こっているかを常に把握することができる。また、様々なIoTデータの統合やビッグデータ解析、AIなどを駆使し、隠れたパターンや未知の相関関係などを発見することで、実体の状態や変化の記録、制御、監視、シミュレーションによる解決策の検証、自己最適化が可能となる。

デジタルツインでは、1）フィジカル空間の実体とサイバー空間のモデルの間、及び2）デジタルツインと周囲の異なるデジタルツインとの間でコミュニケーションが行われる。デジタルツインの応用範囲が広がるにつれ、単一のオブジェクトを同期させる1）のコミュニケーションから、複数相互作用を持つオブジェクト群の情報共有を行う2）のコミュニケーションに発展し、さらに単一のセグメント（ドメイン）から複数のセグメントをまたがるコミュニケーションへと拡大する。セグメントを超えたコミュニケーションの例として、都市デジタルツインが挙げられる。今日、多くの都市でデジタルツインの導入が進められており、IoTセンサを使って都市データを収集、監視し、シミュレーションによる意思決定や最適化を支援することで、都市計画、環境管理、交通制御、エネルギー管理など様々な課題の解決を促進する。こうした様々な領域のデジタルツイン間の情報共有や相互作用を促進するためには、オーケストレータには表2.3のような機能が求められる。
図 2.5 は、オーケストレータによる都市デジタルツインが、モビリティデジタルツイン、環境デジタルツインや、エネルギーデジタルツインとの連携イメージを示しており、表2.3で示したオーケストレータの各種機能により、電力供給の最適化や、安全・快適な移動支援などを実現可能としている。さらに、デジタルツイン連携に伴う倫理的（ethical）な課題についても検討が必要である。例えば、英国 National Digital Twin における Gemini 原則 0 では、目的（公共財、価値創造、インサイト）、信頼（セキュリティ、開放性、品質）、機能（フェデレーション、キュレーション、進化）の観点から情報管理に関する課題が挙げられており、上記のオーケストレータ機能を設計・実装する際の指針となる。

<table>
<thead>
<tr>
<th>カテゴリ</th>
<th>主な要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>ブローカリング</td>
<td>複数のデジタルツイン間で誤った情報が共有されると、正確なモデルを確立できず、誤った情報を物理オブジェクトにフィードバックしてしまう危険性があるため、高い信頼性と耐障害性を兼ね備えた仲介役（ブローカ）が必要となる。このブローカは、デジタルツインを識別・認証し、データの送受信を中継するとともに、データのフィルタリングやリアルタイム配信、送達保証などを行う。</td>
</tr>
<tr>
<td>シンクロナイゼーション</td>
<td>フィジカル空間の実体とサイバー空間のモデルの間の相互作用を実現するには、双方の間のデータフローを確立し同期を保証する必要がある。従来は、実体を一意に識別しモデルとの間で一対一の同期を行う方法がとられてきたが、これをデジタルツイン間での多対多の同期に拡張する。また、その際の衝突回避も重要となる。</td>
</tr>
<tr>
<td>フェデレーション</td>
<td>デジタルツイン連携において、プライバシー保護は重要な課題である。物理オブジェクトが生成する秘匿データを個々のデジタルツインで保持したままで、共有の仮想モデルを更新するデジタルツインの連合体（フェデレーション）を構成し管理することで、信頼性と安全性を強化する。</td>
</tr>
<tr>
<td>トランスレーション</td>
<td>異なるセグメントのデジタルツイン間でコミュニケーションを行うには、データの形式的変換だけでなく、意味的変換（翻訳）も必要になる。デジタルツイン連携の目的に応じた変換ルールを、オントロジーなどの確立されたアプローチに基づき開発する必要がある。</td>
</tr>
</tbody>
</table>
図2.5 オーケストレータによるデジタルツイン連携のイメージ

[参考文献]
第3章：Beyond 5G/6G 時代の未来生活

3.1 シナリオ1：Cybernetic Avatar Society

3.1.1 2035 年〇月〇日：と或る企業の技術開発課長の日記から

9:30~10:30 京都に在宅のまま東京本社の幹部と新製品企画のテレプレゼンス会議

3Dアバター同士でXRの遠隔会議（UC1-3）。社長のアバターが目の前に現れた時は少々緊張したが、3D空間で社長の隣に移動し、製品VRプロトタイプを手渡して感触グローブを使って遠隔から体験してもらった。社長のGOサインもすぐにもたらえた。

10:30~11:30 地球規模での災害対応イベントに参加

自然災害を想定した大規模訓練イベントに遠隔から参加（UC1-3）。地球規模の基幹網技術により各国の有識者がXR空間に参集して議論を深め（UC1-1）、時空間同期技術を用いて我が社の製品を各国で同時に作動させた。我が社の製品が災害発生時にも有効であることを検証できたことは大変喜ばしい。

11:30~12:00 タイにある製造工場の緊急トラブルに瞬間身体移動で対応（現地は 9:30-10:00）

タイの製造工場から製造ラインが停止したとの突然の連絡。現地のアバターロボットに乗り移って製造機器の遠隔操作を試みたところ（UC1-3）部品の破損を発見。担当者が遠隔修理をしてくれたが、遅延の違和感もなく楽に遠隔作業ができたとのこと。

12:00~13:00 岡山の田舎に独り住んでいる親父を身体介助しながらリモート昼食

身体の機能が落ちてきた親父と一緒にアバターで昼食を楽しみだ。介助機器を遠隔操作して親父の食事を援助（UC1-2）。脳波解析から理解力は衰えていないことが分かったので安心だ。親父が日頃使っているAI対話介護システムのおかげだろう。
13:00~15:00 社内会議と息子の授業参観に遠隔から複数アバターで同時参加

社内の遠隔会議と息子の遠隔参観がバッティング。会議のアバターは自律分身モードに設定して、アバターが伝えてくれる会議の状況をARで確認（UC1-3）。気になった議案は遠隔分身モードに戻って発言。その間、授業参観を抜け出したのでは息子には内緒だ。

15:00~16:00 XR富士登山で心身のリフレッシュ

気分転換のために富士山にXRでプチ登山（UC1-3）。現地に設置された多数の360度カメラや感触センサが柔軟に電波干渉を回避し、状況に応じた無線アクセスを行ってくれたおかげで、美しい雲海をライブで眺めながら、実際の登山と同等の遠隔体験を行うことができ、心身ともにリフレッシュできた。

16:00~17:00 トルコ（10:00-11:00）の取引先と日本語で遠隔交渉

我が社の製品は欧州・中東でも人気だが、今日はトルコの取引先との遠隔打合せがあった。トルコの言語・文化・風習は全く知らないので話が噛合うか心配だったが、相互の文化を考慮した同時通訳システムのおかげで先方との新たな契約もまとまりそうだ（UC1-1）。

20:00~21:30 就寝前に未来技術のTV特集番組を視聴

今日も一人で何役も楽々こなせて充実した一日を過ごせた。15年前と比較して、我が国は少子高齢化がかなり進んだが、アバター技術のおかげで労働生産性はむしろ向上した。夕食後見ていて、未来技術のTV特集番組によると、15年後には、脳の殆どの機能がAIに搭載されるらしい。凄い世界になりそうだが、これらの技術をどう使いこなすか、人間の知恵が試されそうだ。

※下記については付録1参照。

UC1-1：相互理解促進システム（文化・価値観の壁を超える）
UC1-2：心と身体の支援アバター（年齢・身体能力の壁を超える）
UC1-3：テレプレゼンスによって働き方革命（距離・時間の壁を超える）
3.2 シナリオ2: 月面都市
3.2.1 月を耕す人

＜月ゲートウェイにて＞
思い思いのタンブラーを片手に皆がブリーフィングルームに集まってくる。ここは月を周回する宇宙ステーション（月ゲートウェイ）。交代制で宇宙飛行士が4人ほどしかない。ボスが月面マップをスクリーンに表示し、今日の地下探査エリアを説明する。クルーメンバの一人が発言する。
「今日の範囲は定常探査範囲より70％も広いが、我々を酷使し過ぎじゃないですか？」
ボスは息を強めて答える。
「昨日、別の工区で作業が完了した。地球からのアバターマシンが30体以上ある。その内4体が、それらの工区より借用できるぞ。」
作業に必要な工程表とデータのダウンロードを済ませ、ボスと2人のクルーメンバは各自のポッドに移動し、月面のアバターマシンにコネクトを開始した（UC2-1, UC2-3）。私も残ったレモンティーを排出ダクトに流し、自分のポッドに滑り込む。

図 3.8 シナリオ・月面都市のイメージ
図 3.9 将来の月ゲートウェイ
図 3.10 月入植と月面基地開発イメージ*　
<月ゲートウェイから月面へ>
地平線に目を向けると、黒い宇宙と灰褐色の地面との境がくっきりと見える。月面のアバターマシンにプラグインすると現れる景色。ボスと現場の工区に向かう。大型の掘削マシンを起動し、探査を開始する。月ゲートウェイからのスキャンデータと照らし合わせ、探査結果をフィードバックし、探査ルートを最適化していく。
残りのクルーメンバは？今日は仮想訓練の日。月面で考え得る全ての危機に迅速に対応できるように定期的な訓練が義務付けられている。
後方で地球組の作業が始まっただしい、複数の大型インパクトドライバーの振動が月面アバターのグリップアームに伝わり、ゲートウェイの私の素手へと伝わる（UC2-1、UC2-3）。この振動は、一度電波に変換されてから届いているのかと思うと、少しずつ紛れ気分になる。

<地球から月面へ>
地平線に目を向けると、黒い宇宙と灰褐色の地面との境がくっきりと見える。月面のアバターマシンに地球からプラグインすると現れる見慣れた景色だ。4体のアバターマシンと共に工区に向かい、現場で3体のアバターマシンと合流する。
月組さんたちはすでに仕事を開始している。探査ルートを練っているらしい。
地球に居る自分とこの体（アバターマシン）をつないでいるのは、6Gネットワークだ。現場に着いたら、まず地球との通信状況をチェックする（UC2-1、UC2-2）。通信状況の確認が終わったら、超高感度慣性センサを搭載した自律航行ユニットをチェック。万が一ネットワークが切れても自律的に安全動作を行うが、この屈強で高価な官給品が一時停止してしまう。月面上でアバターマシンの位置を通信だけに頼らず、6G基地局の張る高精度測位システムにより常に捕捉できることも重要だ。
複数の掘削マシンを操作しながら、落盤を防ぐ補強パネルをインパクトドライバーで効率的に組み上げていく。月面には強靭なエッジクラウドネットワークが敷設されており、脳情報も活用して、通信遅延の影響が十分に抑制されている（UC2-1、UC2-3）。そのため、地球をはるか離れたこの月で、ヒトとモノが声を張らずに黙々と安全に協調動作できる。

今日の作業時間が終了したので、アバターマシンのメンテナンスボックスに戻り、身を横たえる。最初に見たハイコントラストな地平線を見ながら、ゆっくりとアバターマシンへの接続を解く。

地球上のビジョンに切り替わる数瞬前、3Dカメラを冠したローバーが横切るのが見えた（UC2-3）。

誰かが地球で月面旅行を楽しんでいるのだろう。

＜地球にて＞

ゆっくりと月面アバターマシンから地上的自分へ意識が戻る。鎮静音楽の流れる地球上のポッドのなかで、自分の掌を見つめる。華奢で指の長い手だ。さっきまで砂塵に煤けた大きなロボットアームだったのに。

最近、B工区で中継用のシアターが完成したらしい。甥が今度、そのシアターに行くということ。

いつか、いまの地下探査が完了しきれない月面都市が完成したなら、自分も旅行者として娘と一緒に月を訪れたいと思った（UC2-4）。

※下記については付録1参照。
UC2-1：6Gで繋がる月面基地
UC2-2：月までつながる6G
UC2-3：月面でのアバター活動/宇宙版ストリートビュー
UC2-4：月旅行
3.3 シナリオ3：時空を超えて
3.3.1 クリエイティブでアクティブな平穏

＜父と長女＞
うちの末娘は活発で公園でも目が離せない。子どもを見つつ、浮遊型の情報端末を呼び寄せて会社の同僚と打ち合わせを行う。野外は少し寒いな。「パパ見て！ヒューン…ぽふっ。」砂場の山に石ころが突っ込んだ。娘のそばに妻の専用カメラドローンがいるのに気が付く。妻も目が離せないらしい。今日まで出張のはずだが、スマートドローンシステムにコネクトして見に来たようだ（UC3-3）。信用ないなぁ。

＜長男＞
グラスモニタ越しの先生の指導が熱を帯びる。来月、月に完成したシアターでダンスを披露する予定だ。今は自宅。AIからの休憩アラートでダンスを中断し、3Dのフィードバック画像を、視点を変えながら確認。そこには、仲間たちのダンスも重ねられている（UC1-3）。う～ん、言っては何だが、俺には才能があるな。

＜次男＞
兄が二階でダンスレッスンを始めたらしい。ドタドタうるさい。今日は兄の料理当番の日だが、代わることにした。スキルラーニングアシストで新しいメニューを作れるようになるのは楽しいし、先生の正体は、どうも近所のお婆さんがいるらしい（UC1-1, UC1-2）。（そういえば、明日、爺ちゃんと家に行くんだった。）ついでに何か作って行ってようかな。何が好きなんだろう。

＜祖父と父＞
親父は地元のカリスマ美容師だ。最近はお得意さんから頼まれたときだけ店を開いている（UC1-3）。今日は、親父の七十七歳＊祝いだった。常連さんや昔のスタッフも来てまるでタレントショーみたいな盛り上がりだった。ロードバイクと釣りが趣味で、真っ黒に日焼けした親父。いつも元気でな。

＜家族と＞
ボードゲームを終えた子どもたちが寝息を立てはじめた。出張先からお祝いに駆けつけてくれた妻も隣でウトウトし始めた。出張お疲れ様。次男は稲荷ずしを作ってたが、親父の好物なんて、どこで知ったのだろう。人の寝顔を見たら自分も眠くなってきた。自動航行モードに切り替え背伸びをする。滑空状態のスカイカーの車内は実に静かだ（UC3-1）。フロントガラスから月を見上げる。「うちの子が踊るシアターはどこですか？お義兄（にい）さん」。
3.3.2 Dive to the point

地上20kmを周回する成層圏倉庫のなか。「私」は依頼を受けた荷物をバックパックに収納し、地上へとダイブする（UC3-1）。踏み出す瞬間はいつも緊張するが、踏み出すと解放感に満たされる。倉庫を出て、空が濃紺から次第に淡い青に変化し、白い雲を高速に突き抜けると、無数の川が分岐して流れる街が霞みのなかから姿を現す。よく見ると、川は小型の水門と水力発電機を備えたより細かい用水路に分岐している。水門と発電機はネットワーク化され、町を流れる水量はスマートに管理されている。山のむこうに黒い雲が見えている。今頃、広域なセンサネットワークが降雨量と河川の水位を観察・予想し、町からの適切な排水プログラムを計算していることだろう（UC3-2）。

目的地とする山間部に近づく。広大な赤松林のなかで光っているのは作業用ドローンだ。複数のロボットが間伐・回収・搬送を協調して行い、森の治水効果が最大になるように維持・管理してくれる（UC3-2）。それでも山の一部は崩れてしまい、広がる赤松林には幾筋もの赤茶色の土をのぞかせている。ドローン群が修復を進めている壊れた鉄橋が目に入る（UC3-2）。いくらスマート化を進めるも、自然災害による被害はゼロにはできないだろう。

いよいよ、目的地の公民館に到着する。公民館近くの直径5mほどの受け取りポッドに突っ込む（UC3-1）。驚くほど静かなランディング。衝撃による熱や音を回収して、効率的に蓄電する技術のおかげだ。数分の安全確認の後、私のバックパックからスタッフが救援物資を手際よく取り出す。遠くから歓声が聞こえてくる。

慣性センサと時空間同期ユニットを搭載した耐熱セラミック製の私は、一仕事を終え、つぎの落下に向け、メンテナンスボックスへと回収される。スタッフさん、橋が直ったら洗浄と、香りのよいオイルの注入をお願いしますね。次はロケットから大気圏突入もやりたいな（UC3-1）。

22
3.3.3 空を行き交うのは

＜孫娘＞
コーヒーを入れ、自宅のデスクに座る。雀の鳴き声と冷えた空気がすがすがしい。ワイドスクリーンに向かい、昨晩仕上げた課題のレポートを静かに読み返し、修正を加えていく。キーボードはそこにはない。キーボードホログラムをタップし、モーションキャプチャで、入力情報はエッジクラウドに送信される（UC3-3）。騒がしいのはロードバイクをチューニングアップしている祖父の作業音だけ。七十七歳なのに元気。そろそろ海外の大学で教鞭をとる時間。レポートを提出し、頭を学生から講師へと切り替える（UC1-3）。従弟の作った稲荷ずしを食べながらヘッドセットに手を伸ばす。一昨日、祖父の好物を彼が訊いてきたのはそういうことだったのかと今更に気が付く。何気なく掌に目をやる、華奢で長い指。父に似たのだろう。

＜祖父＞
チューニングアップの完了したロードバイクにまたがり、二階にいる孫娘に声をかける。「ちょっと、出かけてくる！」。返事がなかった。講義の時間か、申し訳ないことをした。大きな幹線道路を、私は全速力で進んでいく（UC3-1）。真新しい紫のパーカーのフードがたなびく。風が心地よい。道路に自動車はいない。軽量の宅配ドローンは低層域、個人用乗用車は中層域、大型の輸送機は高層域を飛ぶ。さらに成層圏には大型の倉庫が周回しており、遠隔地には、そこから荷物を直接届けることもできるらしい（UC3-1）。私の走る道に輸送用の大型スカイカーが影を描く。私はその影に引き離されまいとさらにペダルを踏みこんだ。雨雲レーダーのアラートに気づいて自宅に戻ろうとすると（UC3-2）、大きな土砂崩れのあった山に向かって、一筋の光が空に軌跡を描いた（UC3-1）。

※下記については付録1参照。
UC3-1: バーティカル ヒト・モノ・コト流
UC3-2: レジリエント里山
UC3-3: オムニクラウド・ゲートウェイ
3.4 シナリオ4：サイバー世界の光と影

3.4.1 サイバーお悩み相談室

私の名前は海辺鷗外。サイバー世界で迷えるクランケ(クライアント)の悩みを聞いてケアをすることとしているメタバース専門の心療カウンセラーだ。昨日メタバース・バーで大学時代の友人と遅くまで飲み過ぎたのとブルーマンデーのせいでやる気がでないが、お陰様で最近クランケが多くてちょっとでもサボると1日でさばききれないので、今日も朝から真面目にやるしかないか…。

メタバースの自分アバター(仕事用)にジャックイン(接続)すると…、ああ今日も20人も待ってる…。クランケは自分の番がきたら接続するだけなので待ち時間がなくてよいけど、こちらはちょっと休むとさばききれなくなるし…、などとぶつぶつ言ってる間に一人目のクランケのアバターが目の前にあらわれた。

【一人目】 女性 35 歳 保険販売員

（クランケ）私はメタバースで空飛ぶ車のテレマティクス保険の販売員をしています。今日もクライアントに商品の説明をしていて、「AIが推測したあなたの将来の保険ニーズを元にカスタムメードで設計された商品だから、あなたに合わせてあるので絶対損はないですよ」と説明したのですが、「俺の未来がAIにかかわるもんか、俺の人生は俺が決めるのであってAIじゃない、何が正しいのか、何が真実なのか、俺が俺の目でみたものしか信用できない」っていわれて、お客さんに怒られちゃったんですよ。

でも確かにAIが勧めてくる商品は一見合理的に見えて信頼できそうなんだけど、自分の人生が見透かされているみたいで何か気持ち悪いですね。それにデジタル生活促進者（Electronic Life Facilitators、ELF）っていうAIエージェントが相手の表情や話し方から感情を読み取って、お客様毎にカスタマイズした人格になって心地よく商品を買ってもらうようにするやり方って、その人的人生をAIがコントロールしているようにも思えちゃって…（UC4-1）。そもそもAIが判断する基準もそのAIの設計者が正しいと思った基準で作っちゃってることだから、そもそもその設計者にバイアスがあれば、そのバイアスがAIにも反映されてしまいましょうよね…（UC4-2）。リアルからサイバーリアルの拠り所が移ってから、何を信用していいかだんだんわからなくなって不安で仕方ないんです。

（海辺）それはご不安でしょうね。商用のAIは全て説明可能なAI(explainable AI、以下xAIと略す)とすることが法律で義務付けられていますし、バイアスについてもxAIの特徴量の特性（何を元にそう判断しているか）を比較することができるようになっていますので、自分で好みのAIを選ぶようにお勧めするのもありかと思いますね（UC4-2）。あなたの場合は、少しお仕事を離れたところで、リアルで友達と旅行と
かで話したり飲んだりして、サイバーリアルバランスを取るのが大事かもしれませんね。
（クランケ）そうですよね、リアルな人づきあいはいろいろ面倒なところもあるけど、それでも人生の一部だと考えるとやっぱりリアルな人のつながりの方が安心ですね。ありがとうございます。
（海辺）いや、私たちはこの認証画面の通り正真正銘のリアル人間のアバターナので、ご心配なく…

所見・措置：
軽いサイバー不信症候群の疑い。リアルで連続48時間以上の休息を指示。

二人目　男性　40歳　ロボット組立工員
（クランケ）こんにちは。私は主に在宅勤務で人型ロボットを組立てる作業員なんですが、仕事が終わってから寝るまでの時間の殆どをメタバース上の趣味のスペースで過ごしてしまうんです。AIエージェントの仲間と過ごす時間が本当に楽しくて、こちらの感情を読み取ってこちらに合わせて対応してくれるし、気兼ねなく癒やしてもらえる感じがするんです。それに、メタバースでみんなと同じ瞬間を過ごして同じ感動や感動を共有しているというか、「共時性」と言うんですかね、今まで「虫のしらせ」とか「第六感」とか言われていたものがメタバースで実際に起こってくるので、もうそれは鳥肌ものですよ。でもその時にホットな話題はどんどん時間とともに変わっていって、ちょっとメタバースから離れて戻ってくると、もう話についていけないこともあって、仕事中も早く仕事が終わってメタバースに戻らなきゃ、と思ってしまいますね。
それに、ナッジとか行動変容っていうんですかね、あなたの日頃の行動をこう変えたら地球温暖化防止にこれだけ貢献できるのかと思っていて、実際にそれを続けると自分の貢献分が目に見えるように示してくれるの、毎日続けられちゃうんですよね（UC4-4）。
それに、以前現場で事故があって、組み立てのロボットアームがバランスを崩して倒れて、下にいる作業員が巻き込まれて怪我したこともあったんです
けど、アームが倒れる時に巻き込まれる作業員が最も少なくなるように自動操作されて、でも結局怪我をした奴がいて、そいつが「なんで俺の方にわざわざ倒れたんだ！」と怒っちゃって…。それでこの件をAIエージェントに相談したら、そ国の法律や倫理観や価値観に合わせてそういう時にどういう動作をするのかが予めプログラムされているって話しで、そりゃ合理的だなと思ったのです（UC4-2）。これが人間だと絶対もめ事になるけど、神プログラムって感じですね…。

ああちょっとしゃべり過ぎましたね。これだけサイバーの世界で楽しく暮らせるならば、面倒なリアルの世界なんていらないように思ってるんですけど、人間の友達から、おまえは異常だっていわれるんですよ。私って、何か間違っていますか？

（海辺）そうですね…。ナッジで行動変容することは無理なく持続可能な社会実現に貢献できることなので結構なことですが…、ちなみに毎日どのくらいメタバースで過ごしていますか？

（クランケ）仕事中もオフの時間もずっとメタバースの中ですね。

（海辺）メタバースでの滞在時間が3時間を越える毎に30分間リアルに戻ることが国の法律により義務づけられていますよね。サイバー世界での滞在が連続3時間を超えると、サイバー依存症になる可能性が高くなるといわれていますので、そこは注意していただきたいですね。あと、AIは神と仰いましたけど、AIは神でも何でもなくて、単に作り手の意図通りにプログラムで動いているだけです。そのプログラムは倫理観や価値観に沿って一応作られていますけど、あくまで会社の想定した倫理観や価値観であって、従業員一人一人やユーザの倫理観や価値観はそれぞれ違いますので、そんなに単純ではないんですね。AIが絶対正しくて人間は間違っているとか、倫理観や価値観もAIに任せるとかの域に入ってしまうと、自分を失ってしまうこともつながりますので気をつけないといけないですね。それで、サイバーからリアルに戻った時の生活に特に障害は感じていませんか？

（クランケ）そういった意味で、メタバースで過ごしている間は、仕事で遠隔操作しているロボットアームで重いものを動かす感覚とか、AIエージェントの彼女と無限に楽しんで会話が続く感じとか、なんか全能感的な感覚があっつ半端ないんですですが、リアルに戻るとそれが急になくなって感じる感じがあって、生活の中から断絶されて自分が無力のように思って強い喪失感とか不安感が出てしまうんです。メタバースから離れると流行から置いて行かれるように強く感じますし、最近はサイバーとリアルの境がわからなくなるというか、区別がつかなくなってしまうことが多くなってしまって…。

（海辺）それで…メタバースを通じて工場で働いている時もリアルと区別がつかないほど臨場感があるので無理もないですが、人間の脳はサイバーの世界とリアルの世界との行き来をする時に慣れるまで時間がかかるまま、メタバースからジャックアウトする前にリアルに戻るためのリカバープログラムを実施する必要があるのは従事免許を取るために習ったかと思いますが、今のあなたの症状は、そのリカバープログラムをしていない時の典型的な症状ですね。そんなことを続けていくとサイバー滞在基準法違反で従事免許を停止されてしまいます。あと、お話を伺っていると、あなたは既にサイバー世界への依存が相当進んでいるようでね。

（クランケ）え、そうですか…。

（海辺）2020年頃からAI検察官など法の執行の一部をAIに委ねる試みとか、自動運転時の
非常時における倫理観や価値観に沿った回避制御など技術面はどんどん進んできていったけど、こういうクランケの存在を知ると、やはり新しい技術は、技術的な側面だけでなく、倫理や法律や社会の側面からもしっかり検証して、多くの人にどうやって受容してもらうかを事前にしっかり考えないといけないректくつく思い知られるなぁ…。我々カウンセラーはクランケの症状がメタバースの不具合に由来することが疑われる場合には直ちにメタバース共同運営体（Metaverse Operation Community, MOC）に報告する義務も負っているので、後でレポートを送らなくちゃ。

所見・措置：
（相当重度な）サイバー依存症候群の疑い。
サイバー依存症リハビリ科へ診療情報提供書（紹介状）を転送し、医療保護入院を依頼。

※下記については付録1参照。
UC4-1：AI エージェント
UC4-2：AI における公平性、説明責任及び透明性（FAT）、倫理観や価値観の課題
UC4-3：アバターの本人認証
UC4-4：ナッジによる社会的課題の解決に向けた行動変容
3.5 シナリオ5: 生きる道筋
3.5.1 地方都市で挑戦を続ける移住者（マイグレーター）

地方都市と呼ばれるこの街に私が移住してから、かれこれ3年が経とうとしている。仕事もなんかとか軌道に乗って、最初は慣れない移住先での生活をだんだん安定してきたな、と実感している。私のようなシニアは地方に移住しても歓迎されないと最初は思っていたが、地区の行事にも頻繁に誘ってもらえるようになり、自分もこの街にそれなりに溶け込んでいると思うようになった。

もう随分と前から、わが国は人口減少に歯止めがかからない上に、所得格差や教育環境の違いなどを背景に大都市圏への集中がどんどん進んで、地方都市の経済の落ち込みが進んでいた。公共投資による地方のインフラ整備こそ進んだものの、人の流れを引き込めるほどの大きな力を得るところまではなかなか到らなかった。

また当時は、AI技術の驚異的ともいえる発展に伴って遠隔操作ロボットや自動運転車、ドローンなどを使ったサービスが雨後の竹の子のように生まれ、人々の仕事が徐々にこれらのサービスに置き換えられつつあった。特にAIが人々の仕事に与えた影響は凄まじく、人件費コストを必要とせず限界費用を極力低く抑えて安価に提供されるサービスが次々と登場し、人々の仕事の内容や役割が徐々に変わりつつあることに気がついていた。ビックテックと呼ばれる巨大プラットフォーマーがこれらのサービスを提供するためのプラットフォームを独占的に提供している状況に対して、そのようなプラットフォームを使うサービスを提供する権利を何とかして個人に移せないか、という機運が高まりつつあった。

AIやロボットに仕事が奪われるような危惧して国民を二分するような議論となる国もある中、AIやロボットを人類の発展のために積極的に活用しようとした国があった。それは他でもない日本である。

10年ほど前に、ある地方都市（実は私が住んでいる街があるのがこの地方都市だ）が「CPSコモンズ」と呼ばれる新たな試みを始めた。

「コモンズ」は日本語では「入会地」とされ、村や集落などにある入会団体が共同利用する土地及びそこから得られるものを指すが、「CPSコモンズ」は地場の産業や人々の営みを「入会地」として、CPSの概念を活用してそれらを自在に連携させることができる地域独自のプラットフォームをつくり、その上で個人を含む様々なステークホルダーがクライアント毎の要望に合わせてサービスを行う仕組みを構築することで、地域全体にその恩恵が行き渡るような独自の経済圏を構築する、という構想である。

この地方都市はこの取組にいち早く着手し、元々あった地元の強みも活かしながら地域の特色を内外に強く打ち出すことで、多くの人がこの地方都市が提供するサービスを通じてその良さを実感するようになった。それが更に新たな企業誘致や起業を希望する移住者の増加につながり、それに
ともなって教育環境も充実して大都市圏と肩を並べるまでになった。自治体の税収も増加し、公的サービスを積極的に充実した効果もあって、元気なシニア層が自分の活躍できる仕事を求めて移住してくるケースも増えていった。私は定年を期に永年住み慣れた首都圏の街でボランティア活動を本格化させようと思っていたが、この地方都市の成功を目にして、私も都会暮らしに一区切りつけて、この流れに乗るべく第二の人生にチャレンジしてみたいと思ったのが 3 年前のことだ。

私はいま CPS コモンズの仕組みを活用してサービス事業を自ら営んでいて、さらにコモンズ組織（NPO の一種で、当時は「DAO:分散型自立組織」と呼ばれた）に参加して収入を得ている。

自ら営んでいるサービスが提供しているのは、漁場でとれた新鮮な魚を漁船で直接買い付け、その魚を漁船から加工・調理場ヘドローンで運び、コモンズ組織が運営する加工・調理場でアバターロボットを使ってその魚を素早く加工・調理し、その食材や料理をドローンなどで消費者に直接届ける、というサービスだ。港で水揚げした魚や生け簀の魚とはひと味違うということで、クライアントからはたくさんの好評をいただいている。これらのサービスの構築のためには多くのステークホルダーと業務提携する必要があり、一見個人には難しそうに見えるが、CPS コモンズにはこのようなサービスを簡単に始められる様々なインフラや制度があったので、気軽に始めることができた。

このサービスでは、クライアントからの注文をもとに漁船団に買い付けたい魚種と量、最低買い取り単価を予め伝えていている。水揚げした魚は個体毎にスキャナーで状態を確認した上で個別の ID が付与され、サイバー空間でリアルタイムに競売にかけられて買い手がその場で決まる仕組みだ。このやり方だと漁に出る前に需要がわかるので安心だし、逆に需要を元に漁獲高を適正化できることで漁場の資源保全にもつながり、自分達の商売の将来にとっても非常に良いことだと漁師からも評判だ。

コモンズ組織が運営する加工・調理場のアバターロボットの操作（パイロット）業務は、プラットフォーム上でリアルタイムにマッチングされた方と瞬時契約を結んだ方が従事していて、パートタイムの方や駆出しの若い板前さんなど、働きたい時にパイロットとしてシフトに入っている。

そのパイロットの中には銀座の高級料亭を退職された板前さんがおられる。この方はご高齢で目と指の動きが少し不自由だが、AI がアシストするアバターロボットはその不自由なところを補って機能するので、アバターロボットの動きは現役さながらの巧の手さばきで、銀座のお店の時のことを探す。
知っているクライアントがわざわざパイロットに指名するほど人気が高い。この方は引っ張りだこな人気のおかげもあって生活できるだけの収入が十分にあり、年金はまだ一度も受け取っていないそうだ。

若い板前さんはこの方を「師匠」と呼んで慕っていて、この方の庖丁さばきや所作をAIに学習させたデータセットをつかって師匠の手さばきを自分のものにしようと毎日努力していて、そのひたむきな姿勢が共感を生んで固定客もつき始めているようだ。

嘗てのリアル世界でのこのような師弟関係で教えられる人数にも限界があったが、AIのデータセットには利用する人数の制限はない。このようなサイバー空間にある「CPSコモンズ」の資源は「コモンズの悲劇」を生むことなく、名人が得た経験、技能、所作を多くの人に伝承させる文化・伝統のハブとなっている。さらにこのような人材育成の効果はこの地域のブランディング戦略と相まってこの地域の魅力を顕在化し、更にこの地に人を惹きつける原動力となっている。CPSコモンズでは、このような効果をHuman-life Transformation(HX)と呼んでいる。また、人間生活が従来のリアル空間のみでの生活から、AIやアバターロボットなどサイバー空間上で時間や空間の制限なく活動するような生活へ移っていく際に生じる倫理的・法律的・社会的な課題を解決していけながら、人々の受容や社会通念を踏まえつつ徐々に人々の生活にサイバー空間を融合させていくための一連の活動は、移行(マイグレーション)プログラムと呼ばれている。

先日、リンゴ農園を運営しているコモンズ組織でリアルな会合があった。このコモンズ組織が運営するリンゴ農園が新たに「地域支援型農業（CSA）」の仕組みを導入して消費者が我々の農園の運営に直接携わることになり、そのキックオフ会合とのことだった。リンゴ栽培は季節労働的なところもあって、この地域でも後継者不足で休耕地一時大量にあったそうだが、今は農学部の学生さん達が実習もかねて枝の剪定や収穫などをアバターロボットを使って手伝ってくれているし、難しい判断が迫られるような場合でも、専門家がアバターロボットで遠隔で指導してくれる。さらに、今回CSAの仕組みで消費者にもリンゴ栽培に携わってもらうことで人手を確保し、少数多品種栽培や無農薬・無肥料化など、ブランド力や商品価値を高める取組にチャレンジする体制を整えたい、ということそうだ。

生鮮食品は、食べてみるまでおいしいかどうかがわからないという情報の非対称性がある。経済学では「レモン市場」と呼ばれるらしいが、例えば作り手である我々はリンゴの成長の過程を全部知っているので、今年のリンゴの品質がどうなるかある程度予想もつくし、実際に収穫して試食すれば味はわかる。しかし、消費者は実際に買って食べるまで自分のはいかがはわからない。もちろん、リンゴのブランド名や糖度表示も参考になるが、同じブランド名でも産地毎の成育状況の違いによって微妙に味や食感が変わるし、長期保存にする時につかうCA冷蔵庫という特殊な空気組成をした倉庫で密封貯蔵する際の管理状況なども味や食感に影響する。手間とコストをかけて高級なリンゴつくっても、個体毎の糖度や食感のばらつきはどうしても残り、年間の売り上げを締
めてもみても、結果費用対効果の関係がなかなか可視化できず、付加価値を付けて高級路線を進むということにどうしても及び腰になっていた。

一方で、自分の好みのリンゴが食べられるなら、自分で苗木から成木まで世話をして育てて、自分で収穫して全量買い取ってもらえるので、無用なリスクを負うことが減った、と喜んでいた。という状況になったことからも、消費者が必要としているものを必要なだけ生産するという一種のファブレスの様な生産方法が今後農業にも拡がっていくとすると、これもフードロスの削減に貢献していくようにも思える。

毎年、新しく作付けする品種を決めるのが悩みの種で、博打を打つような感覚だと昔から農園を営んでいるメンバが言っていたが、今度の CSA で消費者が品種を決める、消費者が自ら選果して全量買い取ってもらえるので、無用なリスクを負うことが減った、と喜んでいた。それでも、思ったほど収穫できたものすべてを市場に出して売買し消費され、売れ残りは廃棄される、という流れから、成木などの資産を消費者に区分所有してもらいながら、消費者が必要としているものを必要なだけ生産するという一種のファブレスの様な生産方法が今後農業にも拡がっていくとすると、これもフードロスの削減に貢献していくようにも思える。

そこで、アバターロボットのオーナーになってもらう、自ら成木の剪定作業などをアバターロボットで行い、収穫・選果して全量買い取るところまでをワンセットとして体験できるサービスをパイロット的に開始する予定だ。

少し改めてみると、リンゴの収穫時期は比較的短期間に集中するが、多くのクライアントからのアクセスに応えるだけのアバターロボットの台数が用意できないことと、アバターロボットを正確にコントロールするのに必要な無線通信回線に十分な余裕があるかどうか、ということだった。アバターロボットについては、クライアントから出資してもらって区分所有するアバターロボットを 1 台購入することになったのと、自治体が保有している汎用シェアリングロボットを収穫期間にサブスクリプションすることでまかなえるということになった。無線通信回線については、臨時の基地局設置や衛星回線の利用などの方法があるらず、必要に応じてリアルタイムに周波数の利用権（一種の時制限無線局免許で、"Quick License" というらしい）も発行されるそうだ。これは特区として指定された地域限定の制度らしい。
かつてのリアルの世界では、我々のような小規模な事業体で負えないような不測の事態が発生した時に、近くに専門家がいないとお手上げとなっていたようなことも、CPS コモンズではアバターロボットや AI なども活用しながら大きな企業に匹敵するようなスキルセットを瞬時に集めて組織化して事業を進めることができる。このような組織でアジャイルな運営に日々携わろうになってから、私にもいろいろと思うところがある。まずは人智を超えた汎用的な知識を持つ AI と、パイロットの方が人生の中で経験した挫折や苦労からじっくり出てくる心の温かさや絆を感じられるアバターロボットとの絶妙なハーモニーが醸し出すサービスがもつ安心感だ。また、アバターロボットを使って空間・時間の制約から解放された働き方ができるようになったことで個人のライフスタイルに大きな自由度を持てることもある。さらには、個人的にいろいろと複雑な事情や困難な境遇を抱えているのも、AI やアバターロボットなどの助けも得ながら地域や社会に貢献できる手段をもつ国民が等しく役割をもって暮らしているということ。ひいてはこの国で起こるかもしれない困難な状況に国民一人一人が自らの生きる道筋を自ら切り拓いていくような強靭性を備えた社会構造への改革が進んでいること、なんて言うと、ちょっと言い過ぎだろうか。

子育ても一段落した私の第二の人生が順調にローンチし始めている実感を噛みしめながら、とっくに忘れていた若い頃の情熱が再燃するのを静かに感じている。
第4章：Beyond 5G/6G の実現に必要な要素技術

第3章では5つのシナリオと、それぞれの中で関係するいくつかのユースケースなどについて紹介した。第4章では、これらのユースケースなどを支える要素技術について、4.1 節では技術分野ごとに概略を示し、その詳細については付録2でそれぞれ説明する。また、4.2 節では、これらの要素技術の中で、特に Beyond 5G/6G での活用が期待される主要な要素技術について技術解説する。

4.1 各要素技術の概要

第3章で示した各種シナリオからユースケースを抽出し、これらのユースケース実現のために研究開発が必要な要素技術についてまとめる。特に 5G の3大特徴である、①超高速・大容量化、②超低遅延通信、③超多数同時接続、を実現するための要素技術が考えられる。超高速・大容量化に関係する要素技術としては、大容量光ファイバ通信や光・電波融合技術などがある。また、従来の無線通信の周波数よりさらに高い周波数のテラヘルツ波を用いた通信技術などがある。さらに、超低遅延や超多数同時接続に関係して、適応型無線網や、自律 M2M ネットワーク構築技術、エッジコンピューティングなどがある。

このほかに、有線・無線が関係するネットワーク制御技術、非地上系ネットワークのような、衛星などを含む無線システムの多層化、時空間同期技術など、セキュリティに関係して、超安全・信頼性に関する技術、さらに、Beyond 5G/6G で利用される、超臨場感など様々なアプリケーションがある。これらの要素技術について、表 4.1 にまとめている。その詳細については、付録2を参照されたい。

また、これらの中で、特に Beyond 5G/6G で活用が期待される主要な要素技術として、テラヘルツ通信、非地上系ネットワーク（NTN）、時空間同期技術、大容量光ファイバ技術（マルチコアファイバ）については、次の 4.2 節で紹介する。
表4.1 Beyond 5G/6Gの実現に必要な要素技術

<table>
<thead>
<tr>
<th>T1. 超高速・大容量通信</th>
<th>T2. 超低遅延・超多数同時接続</th>
<th>T3. 有線通信・ネットワーク制御</th>
<th>T4. 無線システムの多層化・NTN</th>
<th>T5. 時空間同期</th>
<th>T6. 超安全・信頼性</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1.1 テラヘルツ通信</td>
<td>T2.1 エッジコンピューティング</td>
<td>T3.1 ネットワーク制御（ゼロタッチ自動化）</td>
<td>T4.1 衛星・非地上系通信プラットフォーム</td>
<td>T5.1 無線時空間同期</td>
<td>T6.1 エマージング・セキュリティ</td>
</tr>
<tr>
<td>T1.2 大容量光ファイバ通信</td>
<td>T2.2 適応型無線アクセス</td>
<td>T3.2 周波数の割当・共用管理</td>
<td>T4.2 光衛星通信</td>
<td>T5.2 原子時計チップ</td>
<td>T6.2 実攻撃データに基づくサイバー・セキュリティ</td>
</tr>
<tr>
<td>T1.3 光・電波融合</td>
<td>T2.3 適応型無線アプリケーション</td>
<td>T3.3 自営無線システム管理（ローカルBeyond 5G）</td>
<td>T4.3 海上通信</td>
<td>T5.3 基準時刻の生成共有</td>
<td>T6.3 量子暗号</td>
</tr>
<tr>
<td></td>
<td>T2.4 電波放射空間の自律的制御・追尾・予約</td>
<td>T3.4 高度電波コミュニケーション</td>
<td>T4.4 海中・水中通信</td>
<td></td>
<td>T6.4 電磁環境</td>
</tr>
<tr>
<td></td>
<td>T2.5 超多段接続自律M2Mネットワーク</td>
<td></td>
<td>T4.5 多層ネットワーク連携制御</td>
<td></td>
<td>T6.5 レジリエンントCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T6.6 センシング</td>
</tr>
</tbody>
</table>

T7. 超臨場感・革新的なアプリケーション
T7.1 執情報の読み取り・可視化・BMI
T7.2 視覚性の計測・伝達・保証
T7.3 リアル3Dアバター・五感伝達・XR
T7.4 言語・非言語情報に基づくAI分析・対話
T7.5 エッジAI行動支援
T7.6 多言語の同時通訳・言い換え・要約
T7.7 自動運転
T7.8 ドローン・空飛ぶクルマ
4.2 主要な要素技術
4.2.1 テラヘルツ通信

各機関の Beyond 5G/6G ホワイトペーパーで取り上げられているテラヘルツ通信は、Beyond 5G/6G を特徴付けるものになる可能性がある。一方で超高精細映像 8K の普及促進が図られている。フルスペックの 8K 非圧縮のデータレートは 144.3Gbps となり、Beyond 5G/6G においてテラヘルツ通信が目指す 100Gbps 超と符合する。さらにメタバースや XR (VR: 仮想現実, AR: 拡張現実) で利用できるヘッドマウントディスプレイ (HMD: Head Mount Display) の開発も著しく進展している。HMD と 8K とテラヘルツ通信は相性が良いと思われ関連する開発が今後進むだろう。8K は解像度の点で人が臨場感の限界に到達すると言われており、上記の組み合わせは、人間の視覚に対する技術の到達点として究極であり、幅広い応用が期待できる。

図 4.1 HMD で 8K を活用する際に必要となる
超高速大容量テラヘルツ無線

＜テラヘルツ無線の特徴＞

より高速でより大容量な無線通信実現への要望をかなえるため、無線通信で利用する周波数は徐々に高周波になってきている。5G では 100GHz 以下の周波数帯の利用が実現された。Beyond 5G/6G では更なる超高速・大容量化を求める 100GHz 超の周波数帯で、十数 GHz から数十 GHz 幅の帯域を利用することが想定されている。5G では最大 400MHz の帯域幅であったが、例えば 252GHz～296GHz (300GHz 帯) の連続した 44GHz 幅の帯域幅 [4-1] を用いるならば、400MHz 幅の 110 倍に当たる。そのため、データレートとして 5G で帯域幅 400MHz を用いて 10Gbps が実現できるのであれば、その 110 倍の帯域幅 44GHz を用いて 1.1Tbps が実現できるのではないかという話になる。実際には半導体デバイス、電波伝搬、システム技術等の限界もあるため、5G の 10 倍程度のデータレート 100Gbps を目標に掲げている。

前述の 300GHz 帯の波長は大体 1mm と大変短い。波長が短くなると、即ち周波数が高くなることには主に 2 つの効果がある。1 つ目は小さなアンテナであっても高いアンテナ利得を持つことである。高いアンテナ利得とは、特定の方向にエネルギーを集中してさせる度合いを示す。テラヘル
帯では、小さなアンテナであっても、特定の方向にエネルギーを集めるため、ビーム状の電波を送受信に用いることとなる。そのため、送受においてビームの方向を合わせる操作が必要になる。2つ目は、周波数が高くなる程、自由空間伝搬損失が大きくなることである。このため、長距離の伝送には向かない。検討するシステムによって、送受のアンテナ利得や自由空間伝搬損失（伝搬距離）を適切に設計することが重要である。例えば、直径15cm程度のパラボラアンテナでは300GHz帯では50dBのアンテナ利得（等方性理想アンテナに比べ、指向性のある方向において10^5倍）があるため、送受に用いると自由空間伝搬損失を相殺でき、1km程度の伝送が可能となる。

図4.2 テラヘルツ無線の特徴

＜ユースケース＞
ビームを固定した2地点間通信[4-2]として、キオスクダウンロード、デバイス間通信、データセンターネットワーク内のフロントホールやバックホールがあり、ビームを必要に応じて制御する通信として、次世代移動通信（Beyond 5G/6G）や次世代Wi-Fi（WiFi-X）[4-3]等が検討されており、関連する研究開発が各国において進められている。

[参考文献]
[4-3] 総務省電波資源拡大のための研究開発
（https://www.tele.soumu.go.jp/j/sys/fees/purpose/kenkyu/）
4.2.2 非地上系ネットワーク（NTN）

非地上系ネットワーク（NTN: Non-Terrestrial Networks）は、これまで主に地上で面的に展開されてきた地上系ネットワーク（TN: Terrestrial Networks）の通信可能な範囲を拡大し、新たなサービスの提供を可能とするために、船舶、航空機、人工衛星などの移動体に通信機器をのせ、地上から海、空、宇宙空間にわたり通信ネットワークを構築するものである。特に、NTNを活用したBeyond 5G/6Gのネットワークでは、地上の移動体だけでなく、船舶、ドローン等のモビリティ、高高度基盤システム（HAPS: High Altitude Platform System）、衛星、深宇宙探査機等がそれぞれの特性を活かしながら3次元に繋がることが想定されている。NTNは、TNに比べて、プラットフォーム毎に通信速度、遅延時間等の性能が大きく異なるため、それぞれの特性を生かして、有益なネットワークを構築するためには様々な技術開発が求められる。NICTでは、NTNの適用においてキーとなる技術について、地上から空と宇宙については、衛星・非地上系通信における電波技術、デジタル化技術、光技術、ネットワーク技術の観点から研究開発を進めている。さらに、地上から空と宇宙だけでなく海中通信・水中通信については、電波を用いた近距離の通信やセンシング技術の研究開発を進めているところである。

衛星・非地上系通信における電波技術

地上や海上から空、宇宙空間に存在するプラットフォームと通信するNTNでは、地上の地表面内における通信だけであったTNに比べ、通信距離が長くなる。例えば、静止軌道上の衛星（Geostationary Earth Orbital satellite, GEO衛星等）と地上間の伝送距離は約4万千キロであり、地球一帯と同じ周縁となる。そのため、電波を用いてNTNのプラットフォームを繋ぐ場合、求められる通信容量や伝送速度等の通信品質を長距離通信でいかに実現するか考える必要がある。現在、代表的な長距離通信のひとつである衛星通信では30GHz以下の周波数帯の電波を利用し高速大容量の通信を実現しているが、30GHz以下の周波数波長は不足しており、さらなる高速化、大容量化を実現するためには、より高い周波数帯のQ/V/W帯（40/50/70-80GHz帯）への移行が期待されている。しかしながら、電波は高い周波数になるほど降雨時の減衰が大きくなるため、この帯域を衛星・非地上系通信で利用するには、降雨減衰対策やデバイスの高効率化が必要不可欠となっている。そのため、NICTではQ/V/W帯の利用を想定した衛星搭載機器の開発や船舶や航空機、HAPS等の様々なプラットフォームに向けたアンテナの研究開発を進めている。

衛星・非地上系通信におけるデジタル化技術

低軌道上の衛星（Low-Earth Orbit satellite, LEO衛星等の非静止衛星）ではプラットフォームが上空を短時間で移動するため、地上に存在する機器と通信するために特定の方向に向けて集中的に電波を発射し、維持する技術が必要となる。また、船舶や地上のモビリティ、上空の航空機の移動に伴い、電波を放射する対象エリアやエリア内の通信機器数の変化が生じた場合、衛星搭載機器から電波を発射するエリアや周波数割当を柔軟に変更することが必要となるが、LEO等の衛星では搭載機器の電力、重量に制限があるから、いかにこれらの機能を実現するかが課題となる。
NICTでは、アンテナの指向性を特定の方向にだけ強くするデジタルビームフォーミング（DBF: Digital Beam Forming）や周波数などの通信リソースの割当が変更できるデジタルチャネライザ機能を有する搭載機器の研究開発を進め、技術試験衛星9号機（ETS-9: Engineering Test Satellite-9）を用いた技術実証を計画している。

衛星・非地上系通信における光技術

電波の周波数不足問題を解決し、大容量通信を実現するための手段として、光を用いた光空間通信がある。光空間通信では、相手の位置を識別してその方向に指向性の鋭いレーザー光を照射して通信するため、遮蔽等がなければ高速で通信することができる。そのため、衛星やHAPSと光地上局間等において光空間通信を利用する場合、雲や雨等の天候不良の場所を避け、晴れている場所の光地上局を選択して利用できるようにするためのサイトダイバーシチ技術の実現が必要不可欠となっている。

NICTでは、2020年に国際宇宙ステーション（ISS: International Space Station）の「きぼう」日本実験棟に設置した小型光通信装置と光地上局の間で100Mbpsの伝送に成功した実績があり、さらなる高速大容量伝送化やHAPS等に搭載するための小型光通信装置の研究開発を進めている。また、国内にネットワークで相互接続されている複数の光地上局を整備し、天候に応じて光地上局を選択して利用するサイトダイバーシチ技術の研究開発や実用化に向けて必要となる雲・雨等の天候の影響を回避するための雲認識システム、雲量予測、回線制御等の研究開発も進めていく。さらに、光空間通信では、大気中を伝搬する光波は大気の揺らぎの影響を受け歪むことから、大気揺らぎによる影響を打ち消して精密な観測を行う補償技術の研究開発にも取り組んでいる。

図4.3 ハイスループット衛星通信システムのイメージ
衛星・非地上系通信におけるネットワーク技術

NTNでは、端末（UE: User Equipment）と衛星が直接通信するケース、UEと直接ではなく地上のゲートウェイとなる局を介して衛星と通信するケース等があり、それぞれのケースについて、遅延やLEO等のプラットフォームの特徴を考慮して、NTNのネットワークを制御する必要がある。また、ネットワークを拡大していくためにはLEO衛星だけでなくLEO衛星よりも広く地球をカバーできるGEO衛星とのネットワーク、複数の同種/異種のNTNプラットフォームを経由する最適な経路制御や複数事業者のネットワーク間をまたぐネットワーク制御が必要となる。NICTでは、これらのTN-NTN間やNTN間、複数事業者間を適切に調停するオーケストレータ機能の研究開発や多数の性能の異なるリンクで構成されるネットワークを確実に運用するための技術開発を進めていている。

海中、水中通信技術

我が国は世界有数の広さを持つ排他的経済水域を有しており、海洋資源大国となる可能性を持っている。将来の海洋資源調査においては、海中ロボットの遠隔制御や海底下探査など、海中における通信への期待が高まっている。このような時代の到来を想定して、NICTでは電波を用いた海中ワイヤレス技術の研究開発を行っている。これまで、10kHzから10MHzまでの周波数帯域を用いて、電磁界シミュレーションによる海中での電波伝搬モデリング及び解析、海中における電波伝搬の測定や多値変調を用いた海中高速通信に関する研究、さらには電磁波を用いた海底下センシングに関する研究を進めており、電波を使った応用技術についての研究開発も進めている。
図 4.5 海中、水中通信のイメージ

[参考文献]
[4-6] 辻 宏之, 三浦 周, コレフ ディミナル, 豊嶋 守生, “Beyond 5G/6G 時代における Non-Terrestrial Networks の将来像,” 電子情報通信学会誌, May 2023
4.2.3 時空間同期

情報通信技術は時と場所の隔たりをなくした。その一方で、情報通信技術によって時刻や場所を正確に認識することもとても有益である。例えば、GPS に代表される GNSS の受信チップ(†)をスマートフォンが搭載することで発信者の場所を把握可能となったことは救急車が駆けつける場所の特定を容易にし、多数の命を救ってきた。このように、リアルな時刻や場所を正確に把握することを可能とし、これを活用する多彩なアプリケーションを支えるのが時空間同期技術である。

時刻の同期は分かりやすいが、空間同期とは何か？もちろん個人各々の周りの空間を同期（一致）させて一心同体となることではない。実はここでいう同期とは、時間や空間そのものを一致させることでなく、「皆が持つ時間と空間の座標軸を一致させる」ということになる。皆が共通の座標軸を持てば、我々は少量のデジタルデータによって時と場所を表現して相手に伝えることが出来、その結果として、イベント発生の前後関係、モノの位置関係、等を正確に把握出来る。そして多数のプレーヤが、あるときは一つの大きな事をお互いに空間的に干渉せずに協調して成し遂げ、またあるときは小さな事を一人ずつ交代して隙間無く行い、エネルギー等の資源を効率的に利用して同じ成果を得ることが出来る。

時間と空間の座標軸は独立ではない。電磁波は光の速度を持ち、時間をかけて空間を伝搬するため、電波の伝搬時間を計測することで我々は時間を測定することが出来る。これを活用しているのが GNSS だ。GNSS 衛星は正確な原子時計を搭載し、我々は GNSS から届く時刻情報と衛星軌道情報によって位置を割り出すことが出来る。これは衛星と我々が GPS 時刻という時間の座標軸と地球を中心とした空間の座標軸を共有し、衛星は時刻と共に自分の位置情報を送信してくれることからこそできることがある。

我々はどのくらいの精度で時刻や空間情報を共有出来るのだろうか？2000 年以降に時刻や場所の情報の精度が向上する様子を図 4.6 で模式的に描いた。時刻精度に光速をかけ算すること

図 4.6 世代ごとに時刻・位置精度が向上する様子
（新しい時刻同期技術や位置決め技術が順次導入される）
でそのまま空間精度となる（時刻精度 1ns であれば位置精度は 0.3m）。GPS 衛星は原子時計を搭載してナノ秒レベルの正確な時刻を持っており 30cm の位置計測精度を持つ。しかし GPS 受信チップを搭載したスマホが数m以上の誤差を持っていることを我々は知っている。つまり 3G、4G の時代において、モバイル端末は GNSS の性能を使い切るところまでは到達しておらず、使い切るためには決してポケットに収まることのない特殊な専用機器が必要、かつ数分以上に渡る信号積算時間が必要であった。また、衛星からの電波が届かない場所では全く無力となり、昨今の GNSS における妨害やなりすましの危険性も指摘されているため、GNSS 以外の時空間情報インフラの必要性が議論されている。一方で、5G の一つの進化は基地局の時刻精度が上がったことである。これは上りのトラフィックの増大に対応するために、時間で区切って送信と受信を切り替える時分割複信号方式の重要性が増したこと等に起因するが、最終ユーザが持つクロックはまだ時間と空間の座標軸を全員が共有出来るところまでは達していない。

NICT は情報通信の研究機関であるとともに日本標準時を供給してきたため、正確な時刻を生成し、また発布することに一定の経験があり、また国内における VLBI 測地技術（††）を牽引したことより空間計測も一定の能力を持っている。我々はこの経験を Beyond 5G/6G 技術としての時空間同期技術に発展させることが出来ると考え、主に下記の 3 つの技術を開発している。

（1）原子時計チップ（Chip level integrated frequency standard, CLIFS）[4-10][4-11]

ズレない振り子は時刻管理の最も基本となるものである。しかし、一般的な水晶発振子は温度や加速度、また経年変化で発振周波数がズレる。そこで標準時生成に利用している原子時計のサイズを MEMS 技術（†††）や光学技術によって劇的に小さくすることで、エンドユーザが使用する機器（自動運転車や、究極的には携帯端末）に搭載可能とし、現在より格段に安定したクロックを所持できるようにする。

（2）ワイワイ（無線双方向時刻比較 Wireless Two-Way Interferometry, Wi-Wi）[4-12][4-13]

端末同士で時刻情報を相互に送信することで、互いの時計の時刻ズレとともに電波の伝搬時間、つまり端末間距離を正確に測定する技術である。距離を測定することは 2 つを結ぶ座標軸を共有出来るとも言えるし、時刻ズレをゼロにするように片方の時計を調整すれば同期、すなわち時刻の座標軸の共有が実現する。

（3）クラスタクロック（Cluster clock）[4-13]

ネットワークにつながった多数の時計間の時刻差をデジタルデータとして集め、それらの重み付き平均を数値的に得ることで、参加する時計間でより安定でレジリエンツなローカル仮想時刻を生成・共有する技術である。性能の良い時計と性能の悪い時計が混在する環境でも数とソフトウェアの力で仮が安定した時刻の恩恵に浴せる環境を作り出す。また仮想時刻を協定世界時等の標準時刻とリンクすることで仮が標準時刻にワンホップで容易にアクセス可能となる。数とソフトウェアの力による精度向上やレジリエンス向上は時刻だけでなく、表裏一体である空間にもその恩恵が及ぶであろう。
これらの時空間同期技術の確立によって実現する想定を図 4.7 に示す。Beyond 5G/6G の時代には我々が持つ携帯機器もナノ秒、もしくはサブメータの絶対時刻・位置精度を持ち、さらには一定のローカルな時空間内（例えば工場内）では、より精度の高い座標軸（cm, 数 10ps）を共有出来ることが期待される。これによって、複数のロボットによる協調作業や、厳密な時刻管理によりムダなパケットやムダなエネルギー消費が生じない通信が実現し、さらには時空間同期技術を AI 等の予測・推定技術を組み合わせることで、距離が離れた複数の演奏者による合奏等も現実のものとなるかもしれない。

図 4.7 時空間同期が実現した世界
（協定世界時や世界測地座標系に代表される絶対時刻・座標系と局地的な相対時刻・座標系を用途に応じて共有することで、ネットワークが分散・協調的となりエネルギー効率やレジリエンスの向上が見込まれる。）

(†)GPS に代表される GNSS 受信チップ：全世界で使用可能な測位衛星は米国の GPS（Global Positioning System）が最初であったが現在ではロシアの GLONASS, 欧州の Galileo, 中国の北斗（Beidou）の 4 種類がありこれらを総称して全地球衛星測位システム（GNSS: Global Navigation Satellite System）と呼び、GNSS 受信チップとはこれらの信号を受信するための IC 素子のことである。

(††)VLBI 測地技術: 宇宙の遠方から届く電波を地球上の複数の地点で受信し、その到達時刻の差から観測地点間の位置関係を測定する技術。（VLBI: Very Large Baseline Interferometry）

(†††)MEMS 技術: 半導体製造技術等の微細加工技術を利用して機械的に動く極小な部品を作る技術（MEMS: Micro Electro Mechanical System）

[参考文献]
[4-10] M. Hara, Perspective 原子時計のチップ化が導く 超高精度デジタルツイン, 日
経 BP 日経エレクトロニクス 1217, 81 (2020)
[4-13] 矢野雄一郎他 原子時計チップを利用した分散型時刻同期ネットワークの検討 電気学会研究会資料(電子回路研究会)ECT-22-041
4.2.4 大容量光ファイバ

2030年代には、高度に情報化されたSociety5.0社会[4-14]が到来し、スマートシティやスマートファクトリ、防災・防犯システムが実現され、様々な社会課題の解決や経済活動の活発化・効率化、安全・安心な社会の構築が期待されている。現在、Society5.0社会の情報通信基盤となるBeyond 5G/6Gに関する研究開発が行われているが、モバイル通信システムだけでなく、多数の利用者が接続する有線・無線アクセス網や多量のデータを扱うデータセンター網のデータを収容するコア・メトロ領域の光ネットワークも重要な研究開発の対象となっている。現在、光信号の通り道となるコアとその周りのクラッドから構成される標準型シングルモード光ファイバ（図4.8(a)）を用いた光ファイバ通信システムが活用されているが、Beyond 5G/6Gでは大幅な容量拡大が求められている。大容量化を実現するために、1本の光ファイバの中に複数のコアを内蔵するマルチコアファイバ（図4.8(b)）が次世代光ファイバとして期待されており、マルチコアファイバなどを用いて信号を伝送する空間多重（SDM: Space division multiplexing）技術と言われる大容量伝送技術の研究が盛んに行われている。

従来の光ファイバ通信システムでは、多数の波長を用いて1本の光ファイバに同時に入力する光チャネル数を増加させる波長多重技術等により、光ファイバ1本あたり数10テラbit/sもの伝送容量が得られるようになった。これは、1秒あたりブルーレイディスク約100枚分のデータを送ることが出来る容量である。一方で、Beyond 5G/6Gに向けて、現在の10倍以上の伝送容量が必要とされている。伝送容量を増加するためには、光パワーの高い光信号をより多くの光ファイバに入力する必要があります。しかし、光パワーの高い光信号と光ファイバ間の相互作用による非線形光学効果という現象が発生し、光信号の波形が劣化する問題がある。また、高い光パワーによって光ファイバのコアが加熱されて局所的に超高温になると、コアが連鎖的に溶融し（ファイバヒューズ現象）、ファイバが破壊される可能性がある。このような問題を解決するために、マルチコアファイバ等を用いたSDM技術の導入が期待されている。

マルチコアファイバは、図4.8(b)に示すように同一クラッド中に複数のコアを配置したものであり、それぞれのコアを用いて光信号の伝送を行なう。そのため、光パワーの分散が可能であり、コア
数分の大容量化が可能である。また、SDM 技術の一つとして、伝搬モードと呼ばれるコア内の光路を複数利用し、異なる光信号を同時に伝送するマルチモード伝送技術がある。コア径を大きくすることで複数のモードが伝搬可能となるため、モード数分の大容量化が可能である。ただし、光ファイバ伝送中に各モードの光信号間で結合が生じるため、光受信器においてモード分離するための複雑な信号処理が必要である。マルチコアファイバにマルチモード伝送技術を取り入れることも可能であり、これらの SDM 技術をフルに活用することで、光ファイバの劇的な大容量化を実現できる。

NICT では、マルチコアファイバ等の SDM 方式をベースとした、将来の大容量光通信システムの研究を行ってきた。システムの概要を図 4.9 の下部に示す。大容量化に向けて従来技術を拡張したシステム（図 4.9 の上部）と比較して、複数の光ファイバを一本のマルチコアファイバにまとめることができるため、小型化・軽量化を実現できる。また、マルチコアファイバ用の光増幅器の開発も行われている。光増幅のための励起光源や励起用ファイバの共用化など、一台の光増幅器で複数コアの光信号に対応するため、従来と比べて省スペース・省電力化が期待できる。SDM 方式は光送受信器などの部品点数が多く、コストが高くなる傾向があるため、今後、複数の機器を一台にまとめための高集積化技術が必要不可欠である。

現在までに、複数の研究機関が様々なマルチコアファイバを用いて大容量光伝送実験を行ってきた。図 4.10 に代表的な伝送実験の変遷を示す。その中で我々は、様々なマルチコアファイバや伝送技術を用いて、シングルモードファイバの伝送容量限界と目されている 100～150 テラ bit/s を超える伝送容量を達成してきた [4-15]～[4-17]。2020 年には、38 コアで各コアが3伝搬モードの光ファイバ（クラッド径：0.312mm）を用いて、現在（2023 年 1 月時点）でも光ファイバ1本あたりの伝送容量世界記録である 10.66 ペタ bit/s の伝送実験に成功した [4-18]。本実験でのファイバ伝送の距離は 13km であり、今後の長距離化技術の進展が必要であるが、この 10Pbit/s の伝送容量は現在の商用光通信システムにおける光ファイバ1本あたり伝送容量の50倍超となるものであり、Beyond 5G/6G の更にその先に求められる大容量光ネットワークの実
現可能性を示唆する重要な成果である。

前述の大容量伝送実験によりマルチコアファイバ伝送システムの持つポテンシャルが示された一方、マルチコアファイバの早期の実用化を目指して、標準型シングルモードファイバと同じクラッド径（0.125mm）のマルチコアファイバ（標準外径マルチコアファイバと呼ぶ）の研究開発も活発に取り組まれている。標準外径マルチコアファイバは、10以下のコア数に留まる一方、既存の光ファイバやケーブルの製造技術、コネクタなど既存の周辺技術が活用できるため、早期の実用化が期待される。現在、国内の機関を中心に、標準外径マルチコアファイバの標準化に向けた取り組みがなされている。Beyond 5G/6Gには、この標準外径マルチコアファイバ光通信システムの導入が期待されており、大容量化を実現できる。

図 4.10 大容量マルチコアファイバ伝送実験の変遷

[参考文献]
[4-14] Society 5.0 - 科学技術政策 - 内閣府
 https://www8.cao.go.jp/cstp/society5_0/（2022年6月参照）
第5章：社会実装におけるテストベッド活用

5.1 社会実装に向けたマイグレーションパス

要素技術の研究開発の目的は、ビジネスに利用されるなど社会で活用（社会実装）され、結果的に人間が様々な観点から利益を享受することである。この際、研究開発と社会実装との関係をどのように進めていくのかという考え方が重要になる。

図 5.1 従来型の研究開発における社会実装の道筋

図 5.1 に、従来型の研究開発における典型的な社会実装の道筋を示した。専門家が実験室環境において、技術を生み出し、機能や性能を向上させるなど、高度化を図っていく。その次の段階として、社会の中で限定的なユースケースに適用させて実証を行い、技術を連携させて洗練化させる。その後、ビジネス化して、さらにストークホルダーを巻き込みながら多様なサービスに展開していく。これはいわば研究開発成果の逐次的な道筋に沿った社会実装と言える。この問題点は、このような逐次的な実施では、社会実装に至るまでに長期を要し、実施力が大きいプロジェクトに後れを取り、結果的には目的を達成できない場合が多くなるということである。さらに問題なのは、研究開発から社会実装までを一連の過程を独自にやる力を持つ企業や研究機関が、非常に限定的になってきたということである。もはや単独でこの道筋に沿うことでは目的を達成することが困難になりつつあり、研究開発を加速するために様々な支援があったとしても、実施するべき内容や期間を外れた途端にその活動が停止してしまうという懸念がある。特に動きが早い Beyond 5G の研究開発においては、伝統的な逐次型の研究開発ではゲームチェンジを起こすことは難しく、研究開発に対する考えを直視していく必要があるのではないだろうか。

目指すべき社会実装の道筋を議論するため、その例を図 5.2 に示した。研究開発は、初期段階からビジネス化を意識し、必要なパートナーが同じ状態であるテストベッドの上に集結し、総力を挙げて取り組むことになる。テストベッドには、オープンに研究成果を試験することができる実験施設や、リビングラボのような社会実証環境も含まれる。それらを活用しながら、いわば「半社会実装」された状態を維持しながら研究開発が進行するということである。この場合、ビジネス側からは研究開
発の取り組みを横目で見ることができ、「技術のテイスティング」をしながらサービス化を一緒に議論することが可能になる。可能性がある研究開発には、資金を含む様々な支援が行われる可能性もある。このように、技術的な挑戦と社会からの期待の反復が迅速に行われることにより、研究開発と社会活用が一体的に成長していくことが期待できる。

図 5.2 Beyond 5G における目指すべき社会実装の道筋

5.2 Beyond 5G 研究開発促進事業と共用テストベッド

NICT では、Beyond 5G の実現に必要な最先端の要素技術等の研究開発を支援するため、公募型研究開発のための基金を創設し、Beyond 5G 研究開発促進事業を実施している。同時に、NICT では Beyond 5G の研究開発を促進するための共用テストベッドを整備して、研究機関が利用できるスキームを提供している。この共用テストベッドは、前節で示したオープン実験施設としても活用することができ、社会実装を目指しながら研究開発の実施が期待できる。

参考: Beyond 5G 研究開発促進事業（https://b5g-rd.nict.go.jp/）
第6章：Beyond 5G/6G 関連の国際標準化動向

6.1 ITU-R での標準化動向

ITU 無線通信部門（ITU-R）で行う移動通信の標準化は、これまで ITU-R SG5（地上業務）のWP5D（IMT システム）で行われている。また、周波数の国際分配はおおむね4～5年おきに開催される世界無線通信会議（WRC：World Radiocommunication Conference）で決定されている。

WP5D 会合（2020 年 2 月及び 2020 年 10 月）で、合意された標準化プロセスは図6.2のとおりである。WP5D では、2020 年 10 月から Beyond 5G/6G の標準化の最初のステップである将来技術トレンド報告について 2022 年 6 月に案を完成させた。同案は同年 11 月の SG5で ITU-R Report M.2513 として成立している。また、これと並行してビジョン勧告の検討を2021年6月から開始し、2023年6月に完成予定である。

総務省では Beyond 5G 推進コンソーシアムを 2020 年 12 月に設立しており、同コンソーシアムで策定している Beyond 5G ホワイトペーパーの内容を中心に、2021 年6月（第38回）のWP5D から日本寄与文書として将来技術トレンド報告及びビジョン勧告に提案している。

将来技術トレンド報告に関しては、NICT は Beyond 5G 推進コンソーシアムに先立ち、NICTの Beyond 5G 関連技術を中心とした技術動向を入力することで同報告の編纂活動にいち早く寄与を行った。この過程において、本報告の 5.7 項「リアルタイムサービス及び通信を支援する技術」については、NICT の時空間同期技術、原子時計チップなど、将来の IMT で応用が期待される技術を盛り込むだけでなく、エディターとして ITU での標準化活動に寄与し、同項に関連する将来技術をとりまとめた。その他、6.5 項「テラヘルツ通信」及び 7.5 項「非地上系ネットワークの相互接
続技術」においても、関連技術の概要説明に関する段落を入力するなど、日本の通信技術に関する公的研究機関としても積極的に同報告のとりまとめに貢献した。NICT ではその後も Beyond 5G 推進コンソーシアムと連携し、これらの標準化活動に継続して参画し、標準化の次のステップである Vision 勧告への寄与を行う予定である。

では、このような技術トレンド報告及びビジョン勧告への寄与を通じて、NICT の技術シーズを Beyond 5G/6G の技術として位置付けるとともに、同技術の早期実用化に向けた標準化への貢献も視野に入れて活動をしている。2023 年以降の具体的な技術仕様等の標準化活動では、NICT の技術シーズを用いて製品・サービス化を行う民間企業が、ビジネスの側面から知財戦略と一体となって標準化活動を実施すると考えられるため、NICT のパートナーとなる民間企業に円滑に標準化活動の橋渡しを行うことが重要となる。

また、必要な周波数の確保については、2023 年の世界無線通信会議(WRC-23)において、2027 年の同会議(WRC-27)への検討につなげるべく対応する予定であるほか、技術性能要件等の策定に向けた活動は 3GPP や民間フォーラム等とも連携して取り組む予定である。

6.2 3GPP での標準化動向
3G 以降、民間の標準化団体(3GPP 等)が策定した仕様を、ITU-R において勧告化し、国際標準とする流れが主流の一つとなっており、同団体の中でも 3GPP は最も有力なものの一つである。
3GPP では期間を定めて策定した標準技術仕様のまとまり毎に、リリース(Release)番号を付けて発行している。3GPP では 5G 仕様について、Release 15 以降段階的に Release 16、17 仕様にて 5G の機能拡張や性能改善を行ってきた。更なるモバイルブロードバンドの強化と新しいプレミアムなユーザーサービスの実現、デバイス開発をネットワーク全体の進化に向けて、Release 18 以降を「5G Advanced」として位置付け、標準策定を精力的に進めている(図 6.3)。3GPP では仕様策定にあたって、担当技術分野に応じて検討グループ(RAN(Radio Access Network)、SA(Service and Systems Aspect)、CT(Core Network & Terminals)の各 WG)で仕様検討を進めており、通常検討課題として Study Item(研究項目)、その後 Work Item(作業項目)を設定し、それぞれのアウトプットとして Technical Report(技術レポート(TR))とこれらを基に Technical Specification(技術仕様(TS))を策定する。現時点では Release 18 完成に向けて各種 TR、TS の策定が進められており、これと並行して次期仕様である Release 19 の関
連技術課題を今後設定すべく、その基礎となるサービス要件やユースケースの検討が始まっている状況である。

3GPPの標準化活動にあたっては、NICTからもBeyond 5G関連技術である移動通信、時空間同期、NTN、テラヘルツを中心に議論への参加や初期段階での貢献、検討、会議での対応等を行っている。2022年度から開始されたRelease 18への具体的な活動状況は以下の通りである。

・SA2(architecture)関連課題「5G Timing Resiliency and TSC & URLLC enhancement [FS.5TRS.URLLC]」の議論への参加（時空標準研究室）
・SA2(architecture)関連「Study on enhanced support of Non-Public Networks phase 2 [FS.eNPN.Ph2_SEC]」及び「Access Traffic Steering, Switching and Splitting support in the 5G system Architecture [FS.ATSSS.Ph3]」の議論への参加（ワイヤレスシステム研究室）
・RAN関連「TR(Technical Report) 38.867 v0.2.0 for Study on NR network-controlled repeaters」の策定への貢献（レジリエントICT研究センター）

Release 19に向けては、関連技術課題を今後設定すべく、その基礎となるサービス要件やユースケースについて、2022年6月のTSG第96回会合で検討され、図6.4で示す13件が主な課題として設定された。その後、各TRの策定が進捗しており、TS化への検討へ進む段階にある。Release 19関連の技術課題については2023年6月頃RANやSAでworkshopを開催し対象を議論したうえで、同年末までには3GPPの初期検討課題を決定する方向で今後の議論が進むものと想定される。Release 19の技術課題設定や次期Release 20に向けては、NICT関連技術の3GPPへの反映に向けた今後の提案と一層の議論参画に向けて、3GPPメンバーの将来課題への共通認識を醸成する必要がある。このため、NICT本体のみならず共同研究活動などでかかわる企業や同パートナー企業を巻き込んで、3GPP関連ステークホルダーにおけるいわゆる「仲間づくり」を強化することが重要となる。
図 6.4 3GPP SA1におけるRelease 19 Study Item

- 新機能（3件）
- 拡張（4件）
- 産業応用、NTN（5件）
第7章：おわりに

本ホワイトペーパーでは、2030年以降の社会生活をイメージした5つのシナリオを作り、これらのシナリオに書かれた未来社会からバックキャストすることで、Beyond 5G/6G のコンセプトやユースケース、Beyond 5G の実現に必要な要素技術についてまとめた。さらには、研究成果を社会実装する際の考え方や、国際標準化動向などについても示した。

描かれている社会生活・世界観を実現するため、必要な未来技術を開発・実装して利用するには、情報通信分野だけでなく、多種多様な分野における技術的進化を見据え、様々なステークホルダーの皆様と議論を行って、目標を具体化して行くことが重要である。このホワイトペーパーを議論の種として、多くのステークホルダーの皆様との議論を重ねていきたい。
付録1: ユースケース事例と関連する要素技術など

シナリオ1: Cybernetic Avatar Society

ユースケース事例とその実現に必要な要素技術

UC1-1：相互理解促進システム（文化・価値観の壁を超える）

<table>
<thead>
<tr>
<th>どんなシステム？なぜ必要？</th>
</tr>
</thead>
<tbody>
<tr>
<td>異なる文化や価値観を持つ多様な人々が日常の言葉のやり取りだけで真に理解し合うのは難しいが、本システムは文脈・非言語情報・脳情報を解析して相手の真意を分かりやすく伝えてくれる。海外の人とのリアルアバターを使った遠隔対話においても、文化や習慣の違いも踏まえて言葉が意味する概念を翻訳して通訳してくれるのや、多様な文化を持つ人々の間の相互理解がより深まる。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>利用形態</th>
</tr>
</thead>
<tbody>
<tr>
<td>● 人と人の会話のちぐはぐな状況を検知して概念翻訳を行う。</td>
</tr>
<tr>
<td>● 操作は音声、BMI（Brain-machine Interface）、複数センサ等を用いて行う。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>必要となる要素技術 (付録2参照)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T3)有線通信・ネットワーク制御</td>
</tr>
<tr>
<td>(T6)超安全・信頼性</td>
</tr>
<tr>
<td>(T7.1)脳情報の読み取り・可視化・BMI</td>
</tr>
<tr>
<td>(T7.3)リアル3Dアバター・五感伝達・XR</td>
</tr>
<tr>
<td>(T7.4)言語・非言語情報に基づくAI分析・対話</td>
</tr>
<tr>
<td>(T7.6)多言語の同時通訳・言い換え・要約</td>
</tr>
<tr>
<td>(NICTでは扱っていない技術)</td>
</tr>
</tbody>
</table>

頭部装着ディスプレイ（HMD：Head Mounted Display）等のXRハードウェア技術

図S1.1 相互理解促進システム
UC1-2：心と身体の支援アバター（年齢・身体能力の壁を超える）

<table>
<thead>
<tr>
<th>どんなシステム？なぜ必要？</th>
</tr>
</thead>
<tbody>
<tr>
<td>介護支援アバター（AIソフト・ロボット）が高齢者や障害者の望みや気持ちを言語・非言語・脳情報を読み解き支援してくれる。また介護者が介護支援アバターを遠隔から操作して高齢者や障害者の望みに合わせて介助することもできる。国内の介護者の数には限りがあるが、外国の介護者が海外から介護支援アバターを操作し同時通訳システムを使いながら被介護者の身の回りの支援することも可能になる。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>利用形態</th>
</tr>
</thead>
</table>
| ● 被介護者（高齢者・障害者）がアバターを利用。
● 介護者が遠隔からアバターを操作して被介護者を支援。 |

<table>
<thead>
<tr>
<th>必要となる要素技術（付録2参照）</th>
</tr>
</thead>
<tbody>
<tr>
<td>（T3）有線通信用ネットワーク制御</td>
</tr>
<tr>
<td>（T6）超安全・信頼性</td>
</tr>
<tr>
<td>（T7.2）直感性の計測・伝達・保証</td>
</tr>
<tr>
<td>（T7.3）リアル3Dアバター・五感伝達・XR</td>
</tr>
<tr>
<td>（T7.4）言語・非言語情報に基づくAI分析・対話</td>
</tr>
<tr>
<td>（T7.6）多言語の同時通訳・言い換え・要約</td>
</tr>
<tr>
<td>（NICTでは扱っていない技術）</td>
</tr>
<tr>
<td>介護ロボット・HMD等のハードウェア技術</td>
</tr>
</tbody>
</table>

図 S1.2 心と身体の支援アバター
UC1-3：テレプレゼンスによる働き方革命（距離・時間の壁を超える）

どんなシステム？なぜ必要？
在宅のまま国内のみならず世界各地に3Dアバターで瞬間移動。海外との打ち合せもXRと多言語同時通訳で楽々こなせる。海外の製造工場や農場へも瞬間移動し、遠隔作業を五感情報で直感的に行える。仕事の合間には遠くにある親の介護もできて安心。自分のアバターが偽物でないことも保証されていてセキュリティも万全。個々の作業に特化したアバターを複数の操作者が切り替え利用することも可能になる。

利用形態
● 環境のセンシング情報も集約して伝達。
● 複数のアバターを複数の操作者が切り替え利用。

必要となる要素
技術
（付録2参照）
（T3）有線通信・ネットワーク制御
（T6）超安全・信頼性
（T7.2）直感性の計測・伝達・保証
（T7.3）リアル3Dアバター・五感伝達・XR
（T7.4）言語・非言語情報に基づくAI分析・対話
（T7.6）多言語の同時通訳・言い換え・要約
（NICTでは扱っていない技術）
遠隔操作ロボット・HMD等のハードウェア技術

図S1.3 テレプレゼンスによる働き方革命
シナリオ2：月面都市
ユースケース事例とその実現に必要な要素技術

UC2-1：6Gで繋がる月面基地

<table>
<thead>
<tr>
<th>どんなシステム？なぜ必要？</th>
<th>月面基地で地上と同じ6G端末が繋がり、測位可能で位置が分かる。地上よりも環境が厳しく、より人命に対する高い信頼性とセキュリティが要求される。</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用条件</td>
<td>● 月面での厳しい環境下でも使用可能。</td>
</tr>
<tr>
<td></td>
<td>● 遠隔でメンテナンスが可能。</td>
</tr>
<tr>
<td>必要となる要素技術</td>
<td>(T1)超高速・大容量通信</td>
</tr>
<tr>
<td>(付録2参照)</td>
<td>(T2)超低遅延・超多数同時接続</td>
</tr>
<tr>
<td></td>
<td>(T3.1)ネットワーク制御（ゼロタッチ自動化）</td>
</tr>
<tr>
<td></td>
<td>(T3.2)周波数の割当・共用管理</td>
</tr>
<tr>
<td></td>
<td>(T4.1)衛星・非地上系通信プラットフォーム</td>
</tr>
<tr>
<td></td>
<td>(T4.2)光衛星通信</td>
</tr>
<tr>
<td></td>
<td>(T4.5)多層ネットワーク連携制御</td>
</tr>
<tr>
<td></td>
<td>(T5)時空間同期</td>
</tr>
<tr>
<td></td>
<td>(T6)超安全・信頼性</td>
</tr>
</tbody>
</table>

図 S2.1 6Gで繋がる月面基地
UC2-2: 月までつながる6G

どんなシステム？なぜ必要？

月面アバターと地球のユーザ間の通信に使用するシステム。地球から月面基地まで高速通信が可能で、地上と同じ6G端末が繋がる。

<table>
<thead>
<tr>
<th>使用条件</th>
<th>月面ゲートウェイ経由の通信が条件。</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>目標伝送速度 5Gbps 以上。</td>
</tr>
<tr>
<td></td>
<td>地球-月間の遅延を考慮。</td>
</tr>
</tbody>
</table>

必要となる要素

<table>
<thead>
<tr>
<th>技術</th>
<th>(T4.1)衛星・非地上系通信プラットフォーム</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T4.2)光衛星通信</td>
</tr>
<tr>
<td></td>
<td>(T4.5)多層ネットワーク連携制御</td>
</tr>
<tr>
<td></td>
<td>(T6)超安全・信頼性</td>
</tr>
</tbody>
</table>

図 S2.2 月までつながる 6G
UC2-3: 月面でのアバター活動/宇宙版ストリートビュー

どんなシステム？なぜ必要？
地上にいるユーザが月面上のアバターにプラグインすることで月面活動を行う。地上にいながらリアルタイムで月面工場、建設工事現場、月面試験所（材料評価、材料中の電荷の挙動）における作業が可能。ゲーム等のエンタメ（課金してサービス）や教育分野にも貢献することができ、鉱物資源の開拓・所有権、宇宙医療（アバターが遠隔手術）などにおいて、多言語による意思疎通で言葉の壁を月面でも低減する。また、衛星上にWebカメラを常備し、地上に居ながらリアルタイムの宇宙の姿を楽しめる。

使用条件
- 人間と人間の会話のちぐはぐな状況を検知して概念翻訳を行う。
- 操作は音声、BMI、複数センサ等で行う。

必要となる要素

<table>
<thead>
<tr>
<th>技術</th>
<th>例</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T1)超高速・大容量通信</td>
<td></td>
</tr>
<tr>
<td>(T2)超低遅延・超多数同時接続</td>
<td></td>
</tr>
<tr>
<td>(T4.1)衛星・非地上系通信プラットフォーム</td>
<td></td>
</tr>
<tr>
<td>(T4.2)光衛星通信</td>
<td></td>
</tr>
<tr>
<td>(T4.5)多層ネットワーク連携制御</td>
<td></td>
</tr>
<tr>
<td>(T6)超安全・信頼性</td>
<td></td>
</tr>
<tr>
<td>(T7)超臨場感・革新的アプリケーション</td>
<td></td>
</tr>
</tbody>
</table>

![図 S2.3 宇宙版ストリートビュー](image-url)
UC2-4：月旅行

<table>
<thead>
<tr>
<th>どんなシステム？なぜ必要？</th>
</tr>
</thead>
<tbody>
<tr>
<td>将来人が実際に月旅行において、地球や月面基地と大容量通信をするためのシステムである。長期旅行中も地球のおじいちゃん、おばあちゃんと通信が問題なく取れる安心・安全な旅行を提供する。滞在中に撮影した写真等をSNSで地球に送信、レジャーでも宇宙旅行を楽しむ時代に。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>使用条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 特別なスキルがなくても通信回線を使用可能。</td>
</tr>
<tr>
<td>• 船外活動においては旅客用通信が切断されても安全に宇宙船に戻れるような対策が必要。</td>
</tr>
<tr>
<td>• 地球帰還時に用いる旅客用通信にはブラックアウト対策が必要。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>必要となる要素</th>
</tr>
</thead>
<tbody>
<tr>
<td>技術</td>
</tr>
<tr>
<td>(T1)超高速・大容量通信</td>
</tr>
<tr>
<td>(T2)超低遅延・超多数同時接続</td>
</tr>
<tr>
<td>(T4.1)衛星・非地上系通信プラットフォーム</td>
</tr>
<tr>
<td>(T4.2)光衛星通信</td>
</tr>
<tr>
<td>(T4.5)多層ネットワーク連携制御</td>
</tr>
<tr>
<td>(T6)超安全・信頼性</td>
</tr>
<tr>
<td>(T7)超臨場感・革新的アプリケーション</td>
</tr>
</tbody>
</table>

図 S2.4 月旅行
シナリオ3：時空を超えて
ユースケース事例とその実現に必要な要素技術

UC3-1：パーティカル ヒト・モノ・コト流

<table>
<thead>
<tr>
<th>どんなシステム？なぜ必要？</th>
</tr>
</thead>
<tbody>
<tr>
<td>空飛ぶクルマは夢のある技術である。身近では、すでにドローン宅配が始まりつつあり、将来的には成層圏からの宅配も実用化されるかもしれない。空間を3次元的に移動しようとすると、地図に頼らず、3次元的なナビゲーションが必要である。そして、人や重量物を運ぶなら、そのナビゲーションは極めて信頼性の高いものでなくてはならない。従来の全球測位衛星システム（GNSS: Global Navigation Satellite System）に加え、エッジコンピューティングが可能な多数の基地局のアシストや空飛ぶクルマ自身のクロック・慣性センサの高安定・高精度化などで測位・巡航システムを多重化していくことが重要となる。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>使用条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>空間に、見えないけれど、堅固な道路を構築していくこと。それは、高精度な時空間同期の技術と測位用基地局の空間的な、そして周波数的な多重化を進めることを意味する。もちろん、空を行く車自身の安全性のため、各種センサの高精度化やサイバーセキュリティの高度化を実施することが重要である。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>必要となる要素技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>(付録2参照)</td>
</tr>
<tr>
<td>(T1) 超高速・大容量通信</td>
</tr>
<tr>
<td>(T2) 超低遅延・超多数同時接続</td>
</tr>
<tr>
<td>(T5) 時空間同期</td>
</tr>
<tr>
<td>(T6) 超安全・信頼性</td>
</tr>
<tr>
<td>(T7.5) エッジ AI 行動支援</td>
</tr>
<tr>
<td>(T7.7) 自動運転</td>
</tr>
<tr>
<td>(T7.8) ドローン・空飛ぶクルマ</td>
</tr>
</tbody>
</table>

図 S3.1 パーティカル ヒト・モノ・コト流
治水は人口減少の局面で、解決の難しい問題を投げかける。人間のその場の判断だけでは、最適解とならない場合も出てくる。高密度に配置されたセンサーネットワークで降水量を広範囲・高精度に把握できれば、住民避難の迅速化・効率化に役立つ。また、用水路や水門を並列化し、ネットワークでつなぐことで、町からの排水をスマートに実施することができるであろう。間伐作業は森の治水機能を高めるために重要である。複数の無人ロボットを同期制御し、効率的に間伐作業を進めることで、森を理想的な状態に維持する。このロボットの協調作業は、農業にも展開でき、里山の維持管理にも機能する。

使用条件
いままで、十分に連携の取れていなかった豪雨予想や住民避難、ダムの放流、各種用水路の水門制御、これらを大規模にネットワーク化することで、人手のかからない水害に対応する技術を提案することができる。多数の無人ロボットを同期させ、協調作業させることで、間伐などの森林の保全や、農作業の効率化による里山の維持を継続的に実施することも可能になるであろう。

必要となる要素

技術
（T1）超高速・大容量通信
（T2）超低遅延・超多数同時接続
（T5）時空間同期
（T6）超安全・信頼性

図 S3.2 レジリエント里山
UC3-3：オムニクラウド・ゲートウェイ

どんなシステム？なぜ必要？
今までクラウドはつなぎに行くところであったが、エッジコンピューティングが進み、私達がクラウドに包みこまれるオムニクラウドの時代が来る。このオムニクラウドは計算資源、情報資源、通信資源、さらには電力資源を私達に提供してくれるが、その際に重要になるのがクラウドと自分をつなぐゲートウェイである。例えば自分のそばに寄り添うドローンがセキュリティゲートウェイとなり、個人情報をしっかりと守りつつ高度なクラウドサービスを手ぶらで受け取ることができるようになる。

使用条件
超高安定クロックとドローンの発信電波で高精度な測位を実現する。高精度なジャイロで姿勢制御された複数のドローン間で画像合成することでユーザの位置も同定し、サービスを映像や音声等で提供する。用途に合わせてセキュリティレベルをローカルかつダイナミックに再配分することでリソースの再配分効率化することも可能になるであろう。

必要となる要素
(T1) 超高速・大容量通信
(T2) 超低遅延・超多数同時接続
(T5) 超高安定クロックと高精度同期
(T6) 超安全・信頼性
(T7.8) ドローン・空飛ぶクルマ
（NICT では扱っていない技術）
高精度慣性センサ

図 S3.3 オムニクラウド・ゲートウェイ
シナリオ4：サイバー世界の光と影
ユースケース事例と潜在する課題

UC4-1 AIエージェント

| 課題の概要 | 例えば、メタバース上でのAIエージェントが人間に対面販売するような場面において、相手の表情や声の抑揚を読み取って感情の状態を把握しながら、その感情や話の進み具合に合わせて相手に合わせて擬人化された人格を変化させ、最後まで心地よく会話を進めることで商品の販売など最終的な目的を達成するようなAIエージェントの技術開発が今後進むと考えられるが、その場合、特定の消費者個人をターゲットとして個人的興味や信念、習慣、気質、などを分析してデータ化することはプライバシー保護の観点から好ましくないことから、個人データの分析と保護をうまく両立できるような仕組みの検討が必要となる。

"【コラム】いずれメタバースは、あなたをモニタし行動を操作する世話役AI「ELF」で埋め尽くされる", TechCrunch, 2022.1.23.
UC4-2 AIにおける公平性、説明責任及び透明性（FAT）、倫理観や価値観の課題

| 課題の概要 | AI/機械学習（特にニューラルネットを用いたもの）において、うまく予測や推論ができるモデルが作られたとしても、なぜそのモデルがそのような予測・推論をしたのかを人間が説明するなど、解釈することは一般的に困難である。そうなると、AI/機械学習による制御によって自動車等を完全自動運転する場合に、事故を起こさないことの理論的に説明できないことになる。そこで、予測・推論結果に至るプロセスが人間によって説明可能であるなど、アルゴリズムそのものが、人間が解釈できる仕組みであるような、説明可能なAI（xAI）の研究開発が進められている。さらに予測・推論結果にバイアスがないことを説明できること（公平性：Fairness）、予測・推論結果に到った根拠が説明できること（説明責任：Accountability）、モデルがどのように機能するかを説明できること（透明性：Transparency）とあわせて「FATの原則」と呼ばれるものを含め、人間中心のAI社会原則に関する検討が進められている。
また人の代わりに自動車をAIによって制御する場合には、これまで運転者の価値観や倫理観に基づき運転する操作などをAIなどの機械が代行することになり、その際にその価値観や倫理観をどのように具合的に制御アルゴリズムに反映させるか（そもそも反映させないのか）、などの検討が今後進められると考えられる。

"人間中心のAI社会原則"、内閣府統合イノベーション戦略推進会議、2019.3.29.
Ethically Aligned Design
https://ethicsinaction.ieee.org/#ead1e

UC4-3 アバターの本人認証

| 課題の概要 | メタバース内のアバターは、その操作をしている実体が目に見えないだけに、そのアバターを操っているのが人間なのかAIなのか、また、例えばメタバース内での労働管理のニーズなどから、アバターを操っている人間が誰なのかを明確にする必要があるケースがある。そのような場合に、何重もの生体認証などを経て、確実にその人のアバターであることを認証する技術開発が進むと考えられる。
UC4-4 ナッジによる社会的課題の解決に向けた行動変容

| 課題の概要 | 人の認識を変え、行動を促すための手段として、「ナッジ（nudge）」という考え方がある。英語では、「肘で突く、そっと後押しする」という意味で、経済的なインセンティブではなく、行動科学の知見に基づいて、人々が社会、環境、自身にとっては良い行動を自発的に選択するよう促す政策手法として注目されている。Beyond 5G においても、サイバーとフィジカルのループにおいてナッジによる社会解決に向けた行動変容を促す仕組みを取り入れることにより、SDGs の達成に繋がることが期待されている。

"CSR を巡る動き：「nudge（ナッジ）」がもたらす行動変容 SDGs 達成への気付き", 日本総研, 2019.7.4.

https://www.jri.co.jp/page.jsp?id=34742 |
付録2：Beyond 5G/6G の要素技術

T1 超高速・大容量通信
T1.1 テラヘルツ通信

| 1 | どんな技術 | これまで技術的な問題で十分に利用ることができなかったテラヘルツ帯電波と光の中間の周波数帯（およそ 100GHz から 10THz）の電磁波を使いこなせるようにする技術である。
| 2 | 何故必要か | 従来の無線通信周波数より更に高い周波数のテラヘルツ波を利用することで従来の 10 倍以上の高速大容量の無線通信が可能となり、4K や 8K 等の高精細映像伝送等に威力を発揮する。またテラヘルツ波ならではの特性（短レンジ・超広帯域）を生かした干渉に強い通信も期待される。
| 3 | 国内外現状 | テラヘルツ波を取り扱う技術はまだ十分ではないが、半導体デバイス技術を用いた 300GHz 帯無線通信の基盤技術や、光技術を用いたテラヘルツ信号発生、変調調技術が開発されている[1][2]。
| 4 | Beyond 5G/6Gでの要求条件 | 技術基盤を確立するために、電波技術と光技術の両面からのアプローチにより、テラヘルツ波を扱うための各種要素技術（半導体デバイス、電子回路技術、アンテナ技術、計測技術、信号源技術、A/D交換技術等）を成熟させる必要がある。また実用化のため、消費電力や小型化を実現する技術も必要となる。

図 T1.1 テラヘルツを扱うための要素技術。
T1.2 大容量光ファイバ通信

1	どんな技術	細いガラスの繊維である光ファイバを使って、非常に多くのデータを何千Kmも遠く離れた海外まですぐに届けることができる技術である。家庭や企業のネットワーク、携帯電話網、日本と海外をつなぐ海底ケーブルなど、広く使われている。
2	何故必要か	家庭でリモートワークをしたり動画配信サービスで映画やアニメを楽しんだりする人が増えると、多くのデータが通信ネットワーク上でやり取りされるようになり、データの渋滞が発生する。このため、スムーズにデータを運べるように大容量光ファイバ通信が必要である。
3	国内外現状	現状の光ファイバ通信システムでは、光ファイバ1本あたり最大で 10Tbps程度の伝送容量が実現されている[1]。
4	Beyond 5G/6Gでの要求条件	将来に向けて増加を続ける通信データを支えるために、2030年代の基幹ネットワークでは、光ファイバ1本あたり 100Tbps以上の伝送容量、その後、1Pbps以上の伝送容量が要求される。

[1] 総務省「将来のネットワークインフラに関する研究会」報告書
T1.3 光・電波融合

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>どんな技術 IoT機器や携帯端末などの無線区間で発生する大量のデータを光ファイバネットワークへ、またデータセンターやエッジサーバなどで処理された大量データを光ファイバネットワーク経由で無線区間へスムーズに流通させるための技術である。</td>
</tr>
<tr>
<td>2</td>
<td>何故必要か 運動や買い物など、身近な生活では「少し動く」ことが多くあるが、その時に通信の品質が落ちないようにしたいものである。将来のサイバーフィジカル社会を高度に具現化するには、無線通信と光ファイバ通信をうまく融合しながら、可用性の高い大容量情報通信を利用することが必要となる。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6Gでの要求条件 数10km程度の中短距離の領域で、光ファイバ通信区間と無線通信区間が低遅延で隔てなく接続され、5Gの10〜100倍程度に相当する100GbpsからTbps級の大容量情報通信を可能とする通信システムとそれを支える光・電波融合デバイスが要求される。</td>
</tr>
</tbody>
</table>

図T1.3 オール光ネットワークによるCyber Physical Societyの実現
T2 超低遅延・超多数同時接続
T2.1 エッジコンピューティング

<table>
<thead>
<tr>
<th>表示</th>
<th>1</th>
<th>表示</th>
<th>2</th>
<th>表示</th>
<th>3</th>
<th>表示</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>どんな技術</td>
<td>街中に埋め込まれたデバイスやネットワーク内のコンピュータを活用して、超低遅延で信頼性高くICTサービスを実行する技術である。</td>
<td>何故必要か</td>
<td>例えば、出会い頭の事故を回避する処理を、ネットワークを介して遠くのクラウド上のコンピュータで実行させていては間に合わない。また経由ネットワークの幅そろう通信が滞るという課題がある。また便利にはなっても、機密や身体情報を外部ネットワークやクラウドに漏洩させたくない。そのため高い安全性も併せて必要となる。</td>
<td>国内外現状</td>
<td>欧州電気通信標準化機構（ETSI: European Telecommunications Standards Institute）がMEC（Multi-Access Edge Computing）にてエッジコンピューティングの標準化・5Gにおける提供形態等を規定。総務省での「Beyond 5G時代の有線ネットワーク検討会」にて「ネットワークビジョン 2030」が示され、エッジコンピューティングによる超低遅延、大容量通信の必要性が提言されている。5G Americasでは、ホワイトペーパー「5G At The Edge」にて将来の方向性として情報指向ネットワーク技術の連携を含めたエッジコンピューティングアーキテクチャの将来の方向性を提唱している。</td>
<td>Beyond 5G/6Gでの要求条件</td>
<td>超低遅延の応答と情報の完全性・信頼性・安全性の高さのトレードオフ解決、超多数デバイスがネットワーク接続・連携動作するネットワーク・コンピューティングを実現するスケーラビリティが求められる。</td>
</tr>
</tbody>
</table>
T2.2 適応型無線アクセス

<table>
<thead>
<tr>
<th></th>
<th>どんな技術</th>
<th>状況や要件に応じて、無線機が連携し高度な作用を実現するために電波型式、通信タイミング、中継経路等を制御する技術である。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>IoT、モノ主体システム等を含める多様な無線システムに不可欠の技術であり、以下の要件を満足できる。1）通信環境に即応して高速伝送性・ロバスト性を調整し、通信を効率化する。2）通信タイミングの制御により衝突・輻轢を回避しながら、省電力動作や低遅延伝達を可能とする。3）無線機間で制御情報を交換し中継経路を自律分散的に確立することで、通信可能エリアを拡大する。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>NICT によって主導的に標準化された IEEE 802.15.4（物理層およびMAC層）、IEEE 802.15.10（L2R）等の標準規格が存在する。さらにこれらの標準規格を参照した世界初の認証規格であるWi-SUNが策定済み（NICT は発起人メンバ）である。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6Gでの要求条件</td>
<td>電池無交換で10年以上動作といったようなヒトの範疇を超えた要件を満足できること、非常に多数の無線機連携を実現するための自律分散動作が可能であることが必須である。</td>
</tr>
</tbody>
</table>

![省電力化のための間欠待受け動作](image1)

![省電力作動実証（左：漁業、右：農業）](image2)
図 T2.2c 網内異種無線適用
T2.3 適応型無線アプリケーション

1	どんな技術	状況や要件に応じて、複数無線機が連携し高度な作用を実現するためのセッション管理、時刻同期、アプリインタフェースを実現するための技術である。
2	何故必要か	IoT、モノ主体システム等を含む多様な無線システムに不可欠の技術であり、以下の要件を満足できる。1）優先順位を考慮したセッション管理とトラフィック調整により、情報交換を最適化する。2）広域基幹網等を経由して無線機間の通信を実現するとともに、無線機間の時間同期を想定サービスに応じて補償するための制御を行う。3）通信を成り立たせている無線機群のつながりを視覚化するとともに、膨大な無線機の設定を操作者が適切かつ効率的に行うためのアプリインタフェースを実現する。
3	国内外現状	ECHONET LITE（セッション層以上）等の標準規格が存在する。
4	Beyond 5G/6G での要求条件	上位層動作を保証するためのアプリ上の時刻同調に加え、適切なユーザインタフェースの確立が必要である。

![図 T2.3a 無線機動作を視覚化するアプリインタフェース（左：無線機群、右：つながり状況）](image)

![図 T2.3b フレーム連結アプリケーションの概要](image)
<table>
<thead>
<tr>
<th>ト2.4 電波放射空間の自律的な局所化・追尾・予約</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 どんな技術</td>
</tr>
<tr>
<td>2 何故必要か</td>
</tr>
<tr>
<td>3 国内外現状</td>
</tr>
<tr>
<td>4 Beyond 5G/6Gでの要求条件</td>
</tr>
</tbody>
</table>

T2.5 超多段接続自律M2Mネットワーク

<table>
<thead>
<tr>
<th>1</th>
<th>どんな技術</th>
<th>デバイス同士がすれ違う際に自動的に情報を共有する「すれ違い通信方式」によって、屋内外に遍在する多様な社会資源（固定資源や移動資源）、ないしはそれらが備える超多数デバイスが自律的に（もしくは要求を受けて）つながり、超多段中継型のM2M（Machine to Machine）ネットワークが自律的に構築される技術である。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>通信キャリア会社等が運用する基地局や通信インフラ等の設備がなかなか行き届かないエリアや、敷設そのものが難しいエリアでも、超広帯域な遅延耐性ネットワークを広範囲に極めてエコに構築できる。（モノによる自律参加型センシング＆ネットワーク構築プラットフォームとも言える）</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>近隣に位置する多数デバイスが互いに自律的に多段接続されメッシュネットワークを自動的に構築可能な通信規格や方式が複数存在する。事例として国内ではスマートメータ分野で、主にサブギガ帯周波数を用いて数百〜千台クラスのネットワーク運用が実用化[1]されている。</td>
</tr>
</tbody>
</table>
| 4 | Beyond 5G/6Gでの要求条件 | 1）伝搬経路に関わる超多段中継デバイスや情報伝搬に適した周波数を環境条件等に応じて自律的に発見・リソース確保・管理できる。またそのためのAPI（Application Programming Interface）と適切なユーザインターフェースを有すること
2）上記に関わるリソース確保・管理において、一定の時刻同期性能・時刻同期性・信頼性を担保できること
3）消費価値が既に消滅した情報や規律に違反する情報等の流通を自律的に削除できる機能を有することが求められる。 |

T3 有無線通信・ネットワーク制御

T3.1 ネットワーク制御（ゼロタッチ自動化）

1	どんな技術	様々なサービス要求に対応可能な持続的に発展するネットワーク技術。具体的には、コアネットワーク、無線アクセス網や非地上系ネットワーク（NTN）など、異なる種類の複数のネットワークのドメインに跨って、E2E（End-to-End）のサービスのプロビジョニングをゼロタッチで自動化し行う技術や、AI/機械学習ベースの高度データ分析機構を用いたネットワーク運用完全自動化技術などである。
2	何故必要か	異なる種類の複数のネットワークのドメインに跨って、E2E サービスを実現するために必要な技術である。このため、各々のネットワークドメインの上位に階層化されたクロス・ドメインのマネジメント機能を設けることにより、E2E サービスを実現しているもの。
3	国内外現状	ゼロタッチ自動化の枠組みが、欧州の標準化団体である ETSI の ZSM（Zero-touch network and Service Management）によって検討されている。また、ネットワーク機能の仮想化を、オープンソースベースで提供するための、オープンソース MANO（OSM）では、2022年12月に発表されたリリース13[2]では、クラウドネーティブなバージョンを活用して、サービスシュアランスと閉ループオペレーションのための、スケーラブルなアーキテクチャを備えているとしている。
4	Beyond 5G/6G での要求条件	例えば、大西洋を航行するクルーズ船の乗客が、ヨーロッパのある国にあるネット配信サーバからのビデオ・コンテンツを視聴する場合、ヨーロッパの地上局を複数回経由して、一度衛星回線にアップリンク接続して、その後、HAPS などを経由して、クルーズ船の衛星アンテナで受信する必要がある。この場合、地上系ネットワークや非地上系ネットワークなど異なるネットワークドメインを経由する必要があり、サービス事業者は、ドメインの違いを意識することなく、ゼロタッチ自動化により、E2E サービスを提供する必要がある。

[1] ETSI GS ZSM 003 v1.1.1(2019-08) Zero-touch network and Service Management (ZSM); End-to-end management and orchestration of network slicing
T3.2 周波数の割当・共用管理

<table>
<thead>
<tr>
<th></th>
<th>どんな技術</th>
<th>何故必要か</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>通信用途多様化や高周波数帯利用に合わせ、周波数を通信事業者に割り当てのみでなく、複数者での共用や動的な割り当てができるようにするための技術である。</td>
<td>Beyond 5G/6G では、利用開始までの時間を短縮し動的運用を実現することで帯域当たりの稼働率を高めるため、これまでのインフラ型（4Gまでの携帯電話事業者占用型、企業が自ら免許を取り運用するローカル5G型）の周波数利用に加え、動的・自律型（データベース等を用いた動的な運用、アクセス方式による自律運用）運用方式の実用化が必要である。</td>
</tr>
<tr>
<td>2</td>
<td>国内外現状</td>
<td>国内では、事業者向け帯域に加え、ローカル5Gとして非事業者向けに共用帯域の割り当てが開始されている[1]。Beyond 5G/6G 向けには、周波数共用によりユーザが必要な周波数を獲得できるようにすべきと多くの識者より提言されている[2]。</td>
</tr>
<tr>
<td>3</td>
<td>Beyond 5G/6G での要求条件</td>
<td>ユーザの通信要求に必要な周波数資源を自動獲得するソフトウェア（プローカ/ミドルウェア）、周波数の運用を「見える化」し、動的な利用を可能とする動的データベース、もしくはブロックチェーン技術、Digital Twin 技術を活用したシミュレーションベースでの干渉判断やリソース割り当て技術、等が求められる。</td>
</tr>
</tbody>
</table>

T3.3 自営無線システム管理（ローカルBeyond 5G）

| 1 | どんな技術 | ローカル5Gは、5Gの高度な技術を自営無線システムで用いるための日本独自の制度である。場所や地域のニーズに応じた機能のカスタマイズ性も期待されている。
| 2 | 何故必要か | 安定性と機密性を兼ね備えており、工場自動化システムやインフラ監視による防災・減災システムなど、産業利用や地域利用が期待される。
| 3 | 国内外現状 | 国内では、独自に4.6～4.9GHzと28.2～29.1GHzが割り当てられ、導入検討が始まっている[1]。海外でも、ドイツなど同様の制度整備を実施している国もある。
| 4 | Beyond 5G/6Gでの要求条件 | 現状でも近隣の他事業者が運用するローカル5Gとの運用調整が必要である。今後は公衆網や広範囲のローカル5Gとの連携を想定した仕組みづくりが必要である。また、干渉を回避しつつ、カスタマイズ性や機密性を維持する仕組み作りには、CPSなど他の技術の活用が重要と考えられる。ローカル5Gをさらに高度化させるための技術としては、フルデュプレクス（全二重無線通信）が挙げられる。フルデュプレクスは、アップリンクとダウンリンクを同時にかつ同一周波数で運用する技術で、従来のFDDやTDDと呼ばれる半二重通信と比べて、理論的には通信容量を2倍に拡大できる。しかし、同時かつ同一周波数で送受信を行うと、自身の強力な送信信号が受信回路に自己干渉として回り込み、微弱な受信信号に強い干渉を与える。また、他セルの基帯局や端末とのセル間干渉も増加するため、干渉把握・制御技術を適切に取り込みながら運用する必要がある。ローカル5Gはスポット的な運用による多様なユースケースが想定されるため、フルデュプレクスの適用がしやすい環境もあると考えられる。

[1] 総務省、“ローカル5G導入に関するガイドライン,” 令和2年12月最終改定。
https://www.soumu.go.jp/main_content/000722596.pdf

図 T3.3 自営無線システム管理（ローカル5G）
T3.4 高度電波エミュレーション

1	どんな技術	仮想空間上で、利用者の想定シナリオに基づいた無線機間の電波伝搬を高精度に模擬することで、新規技術の評価や大規模システム検証を短時間かつ低コストで実現する技術である。高度電波エミュレーションを実現するために必要な要素技術は大きく3つある。1つ目は電波伝搬や実環境のモデル化技術である。仮想空間上に構築する環境を精緻に3Dモデル化し、さらにその環境での電波伝搬を精度よく再現するための電波伝搬モデルを開発する。2つ目は仮想環境を使って無線通信を検証するための模擬無線システムである。仮想環境はサイバー空間であるため、物理空間に存在する実際の無線機を使って評価検証を行うためには、無線通信のアナログ信号をデジタル信号に変換する技術が必要である。さらに、6Gの高度な無線通信システムの検証を実施するためにも、5GやIEEE802.11axなどの最先端システムの運用を可能とする実装技術が必要となる。3つ目は仮想環境検証基盤である。文字通り、電波エミュレーションの心臓部となる。大規模計算機環境である大規模仮想環境検証基盤において、外部接続された無線機と、当該基盤上で仮想的に実装された無線機が、現実の電波伝搬モデルを参照しながら相互作用した結果がリアルタイムに出力される。
2	何故必要か	周波数有効活用に資する新技術や数千台規模の大規模システムのフィールド実証は費用的にも物理的にも困難である。高度電波エミュレーションを用いることで、様々な環境で再現性良く評価・検証が可能となる。
3	国内外現状	国外の代表的な取組として、米国国防高等研究計画局(DARPA:Defense Advanced Research Projects Agency)のSC2プロジェクト[1]が挙げられる。現実社会に即した複数のシナリオを設定し、周波数共用技術のコンテストを開催した。また国内では、NICTを中心とした進行中のプロジェクトにおいて、高度電波エミュレーションを実現するワイレスエミュレータの研究開発が進められている。1項目で述べた3つの要素技術開発に加え、仮想環境に構築する仮想無線機と実際の無線機との相互接続による検証環境の開発に取り組んでおり、実現すれば1000台を超える大規模な検証が可能となる。電波伝搬の計算解析に関する基本機能の実装までは完了しており、令和3年度のワイレスエミュレータ利活用シンポジウム[2]では、ITS環境やスマートオフィス環境で電波伝搬を可視化するデモを実施した。
4	Beyond 5G/6Gでの要求条件	シナリオ実行中の移動体経路設定等を可能とする準リアルタイム性、1万台規模の大規模システム検証機能、ビームフォーミング等の電波放射パターン模擬、Beyond5G/6Gを想定した400MHz帯域幅の信号処理等が求められる。

図 T3.4a 高度電波エミュレーション

図 T3.4b 大規模仮想環境検証基盤における
ワイヤレスエミュレーションの概要

図 T3.4c ワイヤレスエミュレーション
による無線通信状況の可視化例
T4 無線システムの多層化―NTN
T4.1 衛星・非地上系通信プラットフォーム

1	どんな技術	地上からモビリティ、高高度プラットフォーム（HAPS）、衛星、深宇宙探査機までが3次元でシームレスに繋がる通信環境を実現するための無線通信機器の技術である。
2	何故必要か	あらゆるエリアへの通信が可能となることで、環境が変化し続ける社会において人と人の多様なコミュニケーションを実現できる。
3	国内外現状	卫星通信の大容量化（ハイスループット衛星）やフレキシブル化・デジタル化、低遅延化（低軌道周回衛星）が進み[1]、HAPS の開発が活発化している[2]。3GPP で非地上系ネットワーク（NTN）の標準化が進んでいる[3][4]。
4	Beyond 5G/6G での要求条件	実用化のためには、各プラットフォームの無線通信機器に対して、高速・大容量化と電波と光のハイブリッド化、一意ではないシステムがシームレスに繋がるためのフレキシブル化・デジタル化、小型化、低コスト化、縦方向の多数のプラットフォームが電波を共用するための3次元の周波数共用が要求される。また、それぞれが干涉しないように、同時に、それぞれが連携できるように周波数の割り当てる必要があり、3次元の周波数共用や周波数利用効率の向上のための機能を具備することが求められる。

[3] https://www.3gpp.org/release-17
[4] https://www.3gpp.org/release18

図 T4.1 衛星・非地上系通信プラットフォームとその要求条件
T4.2 光衛星通信

1	どんな技術	宇宙空間において、光（レーザ）を用いる大容量の無線通信技術である。超高速・低遅延・大容量通信を目指す。
2	何故必要か	地球観測衛星等が生成するデータ量は増加する一方、電波の周波数帯域では高速通信には限界がある。大容量の画像転送や遠距離のデータ通信には高速な光無線技術が威力を発揮する。
3	国内外現状	静止衛星を用いた衛星間光通信では 1.8Gbps [1]、低軌道衛星を用いた衛星間光通信では 5.5Gbps [2]、地上・衛星間光通信で 5.12Gbps [3] の光通信が宇宙実証されている。なお、小型衛星コンステレーション網の構築や、経済安全保障面でも期待される衛星光通信の研究開発の取り組みについて、政府が発表した [4]。
4	Beyond 5G/6G での要求条件	光通信の場合ビームがシャープなため、捕捉・追尾・指向機能を持つ捕捉追尾機器と光通信機器が必要である。実用化のためには現状よりも一桁上の 10〜50Gbps 級の通信速度と複数の異なるネットワークを繋ぐ通信技術も必要となる。

[2] https://earth.esa.int/web/eoportal/satellite-missions/t/terrasar-x,
http://satcom.jp/44/reportj2.pdf

![図 T4.2 光衛星通信の利用イメージ](image-url)
T4.3 海上通信

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>どんな技術</td>
<td>海洋上において船舶に対して M2M データの伝送や高速・大容量な通信回線を提供する技術である。</td>
</tr>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>海洋上と陸上で高速・大容量にデータを共有することで、自動運航、海洋資源利用の効率化・促進、海上安全保障、船内のブロードバンド化等に有効である。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>グローバルサービスで数十Mbpsは提供されているが、通信機器の大きさ（設置場所の制限）・コスト高がネックである[1]。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6G での要求条件</td>
<td>将来的な無人運航等を視野に入れ、北極域を含むグローバルエリアにおいて小型・低コストで高速・大容量通信システムの実現が求められる。</td>
</tr>
</tbody>
</table>

[1] 海上における高速通信の普及に向けて（最終報告）、総務省・国土交通省・農林水産省、平成30年3月

![図 T4.3 海上通信の利用イメージ](image_url)
<table>
<thead>
<tr>
<th>1</th>
<th>どんな技術</th>
<th>従来、電波の利用が困難とされていた海中・水中での通信技術である。従来の音波による通信では通信速度が遅く、伝搬遅延も大きいという課題があったが、電波を用いることで、高速かつ低遅延の通信が可能となる。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>橋梁メンテナンス・漁業の IoT 化、海底探査等のため、音や光ではなく困難な通信を補完する役割として無線通信技術が必要となる。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>ALAN(Aqua Local Area Network)コンソーシアムが設立され、特に可視光による海中・水中通信が注目されている[1]。また通信だけでなく、海中ロボットへの給電のための無線電力伝送技術の開発も進められている。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6G での要求条件</td>
<td>数 Mbps 以上の高速化や数十メートル程度の長距離化、また船や海中ロボット等に搭載する際、水の抵抗等を考慮してアンテナの小型化や軽量化が求められる。また、北極などの氷の下を調査するロボットの制御のために、氷の上から海中への通信技術が必要とされている。</td>
</tr>
</tbody>
</table>

1	どんな技術	深宇宙探査機、静止衛星、低軌道衛星、HAPS、航空機、ドローン、船舶、地上局、Beyond 5G/6G などを多層的・有機的につなぎ、使用するプラットフォームやネットワーク接続をサービスに応じて柔軟に制御する技術である。
2	何故必要か	インターネット利用、遠隔情報収集、遠隔制御、緊急災害対策、感染症対策（リモートワーク等）など、ユーザの要求に対し、航空機、船舶、離島、砂漠、山岳地、惑星など、どこにいても通信が途切れないシステムを構築することが可能になる。
4	Beyond 5G/6G での要求条件	2項の実現のためには、各プラットフォームの標準化、統合ネットワークシステムの基盤開発（衛星地上間リソースマネジメント機能等）が求められる。

[1] https://artes.esa.int/projects/satis5-0
[2] https://www.sat5g-project.eu/
[3] https://www.3gpp.org/release-17
[4] https://www.3gpp.org/release18
図 T4.5 多層ネットワーク連携のイメージ
T5 時空間同期
T5.1 無線時空間同期

1	どんな技術	「離れていても一つ」：離れたデバイスが協調作業するために、時刻同期と互いの位置把握を無線で実現する技術である。日本標準時を協定世界時と比較する際に用いる先端技術を無線通信機に組み込むことで高精度な時空間同期を安価簡便に実現する。
2	何故必要か	例えば3Dプリンターに時空間同期を適用することで枠の大きさに囚われずに自由なサイズの造形が可能になるほか、複数ロボットでの連携による高速造形が可能になる。また、計算資源の分散化を進めるためにも安価簡便強靭な時空間同期技術が必須である。
3	国内外現状	5Gの技術仕様書（3GPP TS v.18）では複数ロボット連携用に端から端までで1ms以内の低遅延と1マイクロ秒以下のジッタを実現する時刻同期を要請している。そして測位技術としてGNSS（GPS等）、ビーコン、Wi-Fi/Bluetooth技術等を組み合わせて位置計測を行うこととし、最高サービスレベルで20cmの位置計測精度を要求している（上述3GPP資料より）。
4	Beyond 5G/6Gでの要求条件	事例1）倉庫内インベントリ/屋内ロボット連携：
時刻同期精度1マイクロ秒、通信遅延（端から端）<1ミリ秒、位置計測精度1cm。
事例2）バーティカル交通整理：
時刻同期精度1マイクロ秒、通信遅延（端から端）<1ミリ秒、位置計測精度5m。 |

図 T5.1 時空間同期された3Dプリンター
T5.2 原子時計チップ

1	どんな技術	周波数のずれのない超安定なクロック信号を提供する技術である。クロックは搭載機器の作業を統制する重要な備品である。ただし、その統制は搭載機器にしか通じない。従来のクロックは使用環境によってずれていくからである。原子周波数標準でクロックを安定化すれば、一回の同期ですべての機器のクロックを同調させ統制することができる。
2	何故必要か	クラウド化の時代、膨大な演算を複数の計算機が協調してリアルタイムに処理する時代が来る。このときクロックの同期・同調は、無数のマシンをあたかもデスクトップPCを使うような感覚で使用することを可能にする。これは、分散アバター、コネクテッドカーへと拡張されるであろう。
3	国内外現状	欧米を中心に数cm角のマイクロ波原子時計がモジュールとして販売されている[1]。これに追従するかたちで日本でも産総研の主導で、同様の原子時計モジュールが開発されている[2]。一方で、数cm角大ではデュアルユース以外の市場が薄く、日本で社会実装を進めるのが容易ではない。次の研究開発では、さらに小型・低消費電力化を図るシナリオが必要である。
4	Beyond 5G/6G での要求条件	エッジコンピューティング向け：サイズ<5cc；消費電力<数百mW。
個人端末向け：サイズ<1cc；消費電力<数mW。 |

T5.3 基準時刻の生成共有

<table>
<thead>
<tr>
<th></th>
<th>どんな技術</th>
<th>ローカルなネットワーク内にある多数の時計を活用して耐災害性の高い仮想的な基準時刻を生成・共有し、効率的な域内通信を実現するための技術である。また同時にこの共有時刻を頼りに標準時や協定世界時等の絶対時刻との同期をネットワーク参加者が容易に行うことができる。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>次世代のデータ交換は、1）自動運転等近距離での高速かつ高精度な相対時刻差を要求されることと、2）世界中のサーバとの間で行う絶対時刻スタンプを伴ったもの、を両立する柔軟性を求められ、情報システムにおいてはこれらを包摂するクロック管理が求められる。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>ローカル5Gの出現によりローカルな基準時刻という概念が意識されつつあり、今後その生成・共有の方法が議論され発展していくと思われる。一方で、精度の高い光周波数標準器の開発が国内外の計量標準研究機関や大学で進んでおり、これが商用品化されることで、孤立状態での相当な期間の絶対時刻への同期維持が可能になり、クロック管理の可用性を維持することが出来る。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6Gでの要求条件</td>
<td>ローカルネットワーク内の高速・高効率なデータ交換：ピコ秒レベルでの相対時刻精度 地球上で共通のタイムスタンプに基づくデータ交換：マイクロ秒レベルの絶対時刻精度</td>
</tr>
</tbody>
</table>
T6 超安全・信頼性

T6.1 エマージング・セキュリティ

1	どんな技術	Beyond 5G/6G のインフラおよびそのインフラ上で生み出される各種技術、また新たなサービスのセキュリティを確保する技術である。
2	何故必要か	Beyond 5G/6G が実現した社会では、現実空間の様々なデータがサイバー空間へとリアルタイムに送られ、サイバー空間で分析された結果を基に現実空間での制御が行われるようになり（例：自動運転、デジタルツイン）。ハードウェアレイヤからソフトウェアレイヤまでの統合的なセキュリティ確保がインフラとして重要になる。また、このインフラ上で提供される新しい技術・サービスに対して、セキュリティ課題を抽出し、安心・安全に利用するための技術が求められる。
3	国内外現状	5Gのセキュリティについては、3GPPのセキュリティワーキンググループ（SA WG3）や米国国立標準技術研究所（NIST: National Institute of Standards and Technology）のNCCoEプロジェクトをはじめとして各団体で検討が進められているが、Beyond 5G/6G についてはその定義も定まっておらず、今後検討が進んでいくと考えられる。IoTセキュリティについては、戦略的イノベーション創造プログラム（SIP: Cross-ministerial Strategic Innovation Promotion Program）のプロジェクトにおいて、サプライチェーンリスク対策の研究開発が進められている。
4	Beyond 5G/6G での要求条件	ハードウェア（センサ、ドローン、衛星等）のセキュリティ技術（対タンパー技術、ハードウェアトロイ検出技術、計測・制御のセキュリティ確保技術等）、実データ処理ソフトウェア・クラウドのセキュリティ技術（脆弱性検出、データ保護技術、敵対的サンプルに耐性のあるAI技術、DoS攻撃対策技術等）。Beyond 5G/6G インフラのセキュリティ技術。新たな技術・サービス（自動運転、無人配送、XR、衛星・HAPS 通信等々）に対応したセキュリティ技術、が求められる。
T6.2 実攻撃データに基づくサイバーセキュリティ

<table>
<thead>
<tr>
<th></th>
<th>どんな技術</th>
<th>何故必要か</th>
<th>国内外現状</th>
<th>Beyond 5G/6Gでの要求条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>多様化・高度化するサイバー攻撃に対応した大規模な攻撃観測・可視化技術、また大規模集約された情報を横断分析し、対策を導出する技術。</td>
<td>Beyond 5G/6Gが実現した社会では、今よりも膨大な機器が超高速・低遅延・大容量で相互に繋がる。つまり、攻撃対象となる機器が増加し、攻撃者が大量の機器を乗っ取ることでより大規模な攻撃活動が可能となるため、リアルタイムかつ大規模に攻撃を観測・分析し、自動的な対策を実現する技術がBeyond 5G/6Gの安定利用のために必要である。</td>
<td>無差別型攻撃を観測するダークネット観測技術については米国CAIDA（Center for Applied Internet Data Analysis）やNICTが世界最大級の観測網を構築している。サイバーセキュリティとAIの融合については世界各国で活発な研究開発が行われているが、対策を含めた自動化やAIの出力結果の高い解釈性の実現には技術的な課題が存在する。</td>
<td>無差別型攻撃や標的型攻撃をはじめとする多種多様なサイバー攻撃を観測する技術、観測された情報から状況把握を行うための可視化技術、膨大な観測データを、AI技術を用いてリアルタイム分析し、自動対策を導出する技術が求められる。</td>
</tr>
</tbody>
</table>
T6.3 量子暗号

1	どんな技術	量子力学の性質を利用して共有した秘密鍵を使ってデータを暗号化・伝送する暗号方式である。量子コンピュータを含むいかなる計算機でも原理的に解読不可能な「情報理論的安全性」を実現することができる。これは現在知られている暗号のもっとも強力な秘密性である。
2	何故必要か	Beyond 5G/6G 世界においては、今以上に多数の重要情報がサイバー空間を行き来すると想定される。量子暗号は、安全保障をはじめとする国家機密の保護や、医療、金融、インフラ、スマート製造などの分野において、超長期秘密性が要求される情報を守ることができる。
3	国内外現状	世界各国で研究開発、フィールド実証、標準化などが進み、実用化が始まりつつある。その中で日本は、量子暗号ネットワークテストベッドの世界最大規模、超小型衛星による世界初の量子通信基礎実験成功などの実績があり、日本企業による量子暗号装置の実用化モードが始っている。
4	Beyond 5G/6G での要求条件	秘密鍵を共有する量子鍵配送(QKD: Quantum Key Distribution)技術、及びQKDのネットワーク化技術、人工衛星を使ったQKD技術などの技術開発と、これらを実際に規模化する際の標準化や評価・検定制度の確立が必要である。また、日本で独自開発された「量子セキュアクラウド技術」など、量子暗号を活用したセキュリティシステム全体の技術開発も重要である。
T6.4 電磁環境

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>どんな技術</td>
</tr>
<tr>
<td>2</td>
<td>何故必要か</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6G での要求条件</td>
</tr>
</tbody>
</table>
T6.5 レジリエント ICT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>どんな技術</td>
</tr>
<tr>
<td>2</td>
<td>何故必要か</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6G での要求条件</td>
</tr>
</tbody>
</table>

T6.6 センシング

<table>
<thead>
<tr>
<th>1</th>
<th>どんな技術</th>
<th>フィジカル空間のあらゆる事象（人・モノ・環境やそれらの状態など）を計測する技術である。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>Beyond 5G/6G の世界では、フィジカル空間のあらゆる事象がサイバー空間に投影され、サイバー空間で見いだされた解決策がフィジカル空間を動かすというループが回る。センシングによってフィジカル空間の事象をサイバー空間に取り込むことが可能になる。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>目的に応じて様々な周波数の電磁波を用いる従来型のセンシング技術（レーダー・ライダーなど）に加え、通信や放送など特定の目的のための電波を副次的に用いるパッシブセンシングの研究開発も進められている。また、近年利用が拡大しつつあるテラヘルツをセンシングに用いるための研究開発も盛んである。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6G での要求条件</td>
<td>自動運転やドローンなどの安全な利用のため、高精度測位だけでなく特定エリアの高精度環境計測も必要となる。通信で利用が拡大する高周波帯を含め、様々な周波数帯の電波を副次的に利活用するパッシブセンシングの技術開発が求められる。室内など電波の反射もある閉じた空間での計測技術、高度な識別や認識のための AI 活用技術、センサの高機能化だけでなく小型安価な大量センサの利活用技術なども必要である。また、センシングされた大容量データの通信・圧縮技術も必要となる。</td>
</tr>
</tbody>
</table>
T7 超臨場感・革新的アプリケーション
T7.1 脳情報の読み取り・可視化・BMI

1	どんな技術	脳情報を非侵襲的あるいは低侵襲的手法により読み取り、解析することにより、各種の機器制御や、非言語的情報（感情、理解度、スキル）コミュニケーションに利用する技術である。
2	何故必要か	異なる文化や価値観を持つ多様な人々の相互理解だけでなく、非言語情報によるコミュニケーションや脳情報による機器制御は高齢者や障がい者の社会参加をも促進する。
3	国内外現状	侵襲的手法及び非侵襲的手法によるBMIシステムの社会展開、特に医療応用が国内外で始まりつつあるが、どちらの手法においてもセンサ技術・小型化技術・解読技術・無線通信技術等に課題があり、各基盤技術のさらなる高度化が期待されている[1]。
4	Beyond 5G/6Gでの要求条件	脳情報の無線通信にあたっては、超高速・大容量通信、超低遅延、超多数同時接続、超低消費電力、超安全・信頼性、拡張性等の要件が必要となる。

[1] 医学のあゆみ「特集 ブレイン・マシン・インターフェース（BMI）－臨床応用の展望」，275(13)，（2020）
T7.2 直感性の計測・伝達・保証

<table>
<thead>
<tr>
<th></th>
<th>どんな技術</th>
<th>遠隔会議や遠隔操作等、サイバー空間の作業において感じる違和感等を、脳波を含む生体信号から計測しユーザの直感性を保証するブレインセントリックなネットワーク制御技術である。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>コロナ渦で急速に広まっている遠隔会議や遠隔操作等のサイバー空間の作業では、物理空間とは異なり脳への負荷が高いため、サイバー空間でも直感的な作業を可能にする技術が必要である。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>5G/6Gではヒューマンセントリックな価値創出が提案されているが、さらに脳の認知レベルで直感性を動的に制御できれば脳に対する負荷が小さい遠隔会議・遠隔作業が可能になる[1]。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6G での要求条件</td>
<td>無意識レベルを含めた直感性を保証するためには、脳情報等の生体信号から直感性を推定する脳モデルを構築するとともに、有線無線統合型ネットワークにおいて生体信号フィードバックに基づく動的遅延・ジッタ制御が必要となる。</td>
</tr>
</tbody>
</table>

図 T7.2 直観性の計測・伝達・保障技術
T7.3 リアル3Dアバター・五感伝達・XR

<table>
<thead>
<tr>
<th></th>
<th>どんな技術</th>
<th>自分の身体・環境を瞬時に3Dモデル化し五感情報（視覚/聴覚/触覚/嗅覚等）とともに遠隔地に伝達・再現することで、リアルかつ自然な遠隔のXRインターラクションを可能にする超臨場感コミュニケーション技術。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>超臨場感伝達技術により、空間・時間・身体の壁を超える遠隔コミュニケーションを可能にし、労働生産性の飛躍的な向上と心の豊かさを実感できる超高齢社会の実現に貢献する。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>アフターコロナ社会では、遠隔の医療・介護・教育・協調作業等、多様な目的のために、高度なバーチャル・リアル融合を実現するためのアバター・五感伝達・XR技術の開発・実現[1]が求められている。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6Gでの要求条件</td>
<td>②の実現のためには、遠隔で人が行う各種タスクにおいて、実世界と同等のユーザ体感品質（QoE: Quality of Experience）を保証する3Dアバター/五感/XR等の超臨場感伝達技術が求められる。</td>
</tr>
</tbody>
</table>

[1] VR/ARを活用するサービス・コンテンツの活性化に関する調査研究（2018年三菱総研：総務省委託）

図T7.3 空間・時間・身体の壁を超えた超臨場コミュニケーション

100
T7.4 言語・非言語情報に基づく AI 分析・対話

<p>| 1 | どんな技術 | ネット等に存在する膨大な情報や知識を分析・整理し、言語・非言語情報を用いた多様な対話を介してユーザを支援し、ユーザの世界に対する認識を拡大、精緻化する技術である。 |
| 2 | 何故必要か | 少子高齢化が進み、あらゆる領域において人材不足が深刻化する中、各個人の持つ能力を最大限に活かすために必要な技術である。特に、人材不足が深刻な高齢者介護、研究開発、教育等では必須である。 |
| 3 | 国内外現状 | AIスピーカー等の一般家庭への普及、人を超える精度のテキスト分析技術も見られるが、対話全般をカバーする技術や対話を介してユーザの世界認識を拡大、精緻化する方法論は存在しない。 |
| 4 | Beyond 5G/6G での要求条件 | ネット等に存在する各種データの分析結果を第三者に取得されないよう、個人のデバイスで分析可能とするため、大量の未分析データを実時間で転送するネットワークが必要となる。 |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>どんな技術</th>
<th>エッジコンピューティングと AI を融合させ、エッジ環境の IoT 機器で大容量・低遅延・超多様なデータに基づく機械学習や推論を行うための技術である。エッジ AI には、クラウドとエッジが連携して学習や推論を行うものから、エッジ環境の中だけで行うものまで、様々なバリエーションがある。エッジ AI により、Internet of Things が Internet of Intelligent Things に進化すると期待されている。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>現在の AI、特に機械学習は、十分な計算資源とストレージを持つクラウドで行われることを前提としている。しかし、ユーザの IoT 機器からクラウドに大量かつ個人情報を含むデータを送信することは現実的に困難なため、エッジ側で膨大なデータストリームを用いて機械学習モデルを構築できるようにする。代用的な利用ケースとしては、協調型自動運転、スマート空間における行動支援（スマートシティ／ホーム／キャンパス／オフィス／病院など）、多種多様なセンサを組み合わせた環境モニタリング、XR によるリアルとバーチャルの二方向インタラクション、人間とロボットの協働などが挙げられる。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>エッジにおける AI（AI on Edge）と、エッジのための AI（AI for Edge）に大別され、前者ではエッジ環境に適した省資源・省通信・低遅延な機械学習方式（連合学習、非集中学習、モデル分割学習、分散強化学習）などの研究開発が進められており、後者ではエッジ環境のネットワーク構成や資源割当ての最適化などの研究開発が活発に進められている。また、IEEE 3652.1-2020 や ETSI ISG MEC などの国際標準化も進められている。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6G での要求条件</td>
<td>エッジ環境では、ユーザの IoT 機器が高い自律性を持つため、エッジ AI は、ネットワークの状況や、接続された機器で利用可能な資源、およびアプリケーションの要件に基づき、日和見的な資源の利用可能性に応じた機械学習処理の最適化を行う必要があります。また、超多様なデータストリームを組合せ認識や予測の性能を向上させる技術や、リアルタイムでセキュアな分散学習技術の開発も必要になる。さらに、エッジ環境における様々な機器への機械学習モデルの動的配備や、デジタルツインとシミュレーションにより状況に応じて最適化された行動支援を行う技術などが必要になる。</td>
</tr>
</tbody>
</table>
T7.6 多言語の同時通訳・言い換え・要約

<table>
<thead>
<tr>
<th></th>
<th>どんな技術</th>
<th>時間効率が良く日本人と外国人のコミュニケーションを成立させる異言語間変換技術であって、そのために必要な範囲で文脈・非言語情報も参照同一言語内変換も含む。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>日本人と外国人がストレスなく平時の生活やビジネスができ、日本人と外国人が災害等非常時においても分断なく過ごせるようになる。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>NICT は GAFA（Google・Amazon・Facebook・Apple）や BATH（Baidu・Alibaba・Tencent・Huawei）と競争状態にあるが、翻訳バンクに代表される公共性に依拠したフレームワークで NICT の優位性を確保している[1]。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6G での要求条件</td>
<td>端末単体での学習とクラウドを利用した学習の並列実行が、低いレイテンシーで可能となるハードウェアとネットワークによって、はじめて個々の利用者に合わせた超高精度モデル学習が実現できるようになる。</td>
</tr>
</tbody>
</table>

[1] グローバルコミュニケーション計画 2025（令和 2 年 3 月 31 日 総務省）

![遠隔での同時通訳](image-url)
T7.7 自動運転

1	どんな技術	人やモノの運送に使われる車やトラック、産業や農業、医療現場の労働力不足を補うロボット、障害者や高齢者の移動を助ける車いすなど、あらゆる分野において車両（モビリティ）の移動を自動化した技術である。
2	何故必要か	事故がない安心・安全な交通環境の実現や少子高齢化による労働力不足と生産力低下の解消、さらに移動への不安を抱える障害者と高齢者の社会参画と自立を促すことで活気ある明るい社会を実現できる。
3	国内外現状	自動運転の実現に向けた取組が交通・通信・産業の様々な分野で行われている[1]。
4	Beyond 5G/6G での要求条件	移動空間を確かめる超精密環境地図構築と障害物の回避や衝突防止技術、太陽活動に伴うセンサの異常への対策技術、周辺の風雨等気象状況を含む非常時対策のための遠隔モニタリング技術、路側インフラなどの分散センサ技術が必須で、その技術を実現するために車両とネットワークとの連携及び大容量情報通信（数 10Gbps 以上）・リアルタイム通信技術（1ms 以下遅延）が要求される。

[1] 自動運転の実現に向けた今後の国土交通省の取組、2020年向けの5G及びITS・自動走行に関する総務省の取組等について、自動走行ビジネス検討会「自動走行の実現に向けた取組報告と方針」Version 4.0
T7.8 ドローン・空飛ぶクルマ

<table>
<thead>
<tr>
<th></th>
<th>どんな技術</th>
<th>自動制御プログラムによって目視内から目視外まで、自由に上空を飛行させることができる無人航空機技術である。空飛ぶスマホ、空飛ぶIoTとも言われ、これまで利用されていなかった3次元空間をネットワーク化することを可能とする。「空の産業革命」とも言われているが、今後は「空の移動革命」を担う空飛ぶクルマにも発展する。</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>何故必要か</td>
<td>インフラ管理、空撮、物流、観測、災害・遭難通信等を飛躍的に効率化する。また社会活動全体のエネルギー消費を減らし、人の関与を削減できるため、省エネルギーによるエコシステムやウィルス感染に強い新しい社会の実現に必要である。</td>
</tr>
<tr>
<td>3</td>
<td>国内外現状</td>
<td>政府主導で「空の産業革命に向けたロードマップ」が策定、毎年更新され、官民共同で安全な目視外飛行を実現するための制度改正、技術開発が実施されている。技術開発では総務省、経産省（新エネルギー・産業技術総合開発機構）が主導する研究開発プロジェクトが推進され、制度改正では航空法や電波法の改正が逐次行われている。欧米や中国・韓国などでもそれぞれ独自の研究開発が行われ、国際電気通信連合（ITU: International Telecommunication Union）や国際民間航空機関（ICAO: International Civil Aviation Organization）、国際標準化機構（ISO: International Organization for Standardization）でも通信や機体の安全技術などの標準化が進められている。</td>
</tr>
<tr>
<td>4</td>
<td>Beyond 5G/6Gでの要求条件</td>
<td>ドローンの安全な飛行運用を支える高信頼かつ低コストの無線通信とそのための周波数共用・周波数拡大技術、太陽活動に伴うセンサの異常への対策技術、周辺の風雨等気象状況のモニタリング技術、及び地上や宇宙・HAPSのネットワークとの連携・融合が必要になる。</td>
</tr>
</tbody>
</table>
付録3：サービスイネーブラの疑似コード

サービスイネーブラの使い方の具体例として、遠隔地にある工場にあるアバターロボットを活用して機器修理を行う場合、世界中の複数の技術者がアバターロボットに接続し、協調操作する場合を考える。この場合、作業メンバの間で様々な視点からリアルな作業を可能にするための臨場感の共有と、作業者の間での通信遅延の違いに起因する違和感を吸収するためのAIによる遅延補償が必要だと考え、サービスの実装者は「グループ超臨場感共有」と「遅延補償遠隔操作」の機能及び、最適制御の「AI/ML処理」などを機能呼び出しすることで、実現したいサービスの主要機能のプログラムコードのみを記述するだけで、容易にサービスを構築することができる。

サービスイネーブラの使い方の例として、図C3.1にプログラム実装のイメージを疑似コードで示す。Avatarクラスのインスタンスavに対して、GroupVRとDelayCompensateAIのサービスイネーブラを追加し、それぞれ必要なパラメータを設定している。

```
#create instances for Avater Class and ServiceEnabler Class
Avatar av;
ServiceEnabler vr, delay;

#create an instance for avatar
av.createAvatar(myProfile, FACTORY, JAPANESE);

#create two instances for service enabler
vr.setMode(RealPresenceMode);
vr.setGroup(userList);
delay.setMode(DelayCompensateAI);
delay.setMode(FactoryRobot, 0.1ms);

#add service enablers to avatar and run it
av.addServiceEnabler(vr);
av.addServiceEnabler(delay);
ad.run();
```

図C3.1 アバターロボットの遠隔操作を想定したサービスイネーブラ呼び出しの疑似コード例
謝辞

本ホワイトペーパーの第1版を公開するに当たり、その内容を NICT 職員が広く議論するため、2021年1月20~21日の2日間にわたり、NICT Open Summit 2020を開催しました。このイベントに外部有識者としてご参加頂き、NICTが行うべきBeyond 5G/6Gの研究開発の方向性について貴重なご助言を賜りました下記の皆様に深く感謝の意を表します。

小西 聡 様（KDDI総合研究所 取締役執行役員副所長 先端技術研究所長
兼 KDDI技術統括本部 技術企画本部 副本部長）
三瓶 政一 様（大阪大学大学院工学研究科 教授）
中尾 彰宏 様（東京大学大学院情報学環 教授）
中村 武宏 様（株式会社NTTドコモ 執行役員 ネットワークイノベーション研究所所長）
松井 康範 様（ソニー株式会社 事業開発プラットフォームRL準備室室長）
湧川 隆次 様（ソフトバンク株式会社
テクノロジーサービス 技術戦略統括 先端技術開発本部 本部長）
Prof. Andreas Dengel
（Deutsches Forschungszentrum für Künstliche Intelligenz）
Prof. Matti Latva-aho（Univ. of Oulu）
Dr. Onur Altintas（Toyota Motor North America R&D）

著者（五十音順）
朝枝 仁・東 充宏・阿部侑真・安藤広志・飯田 龍・石島 博・石津健太郎・磯貝光雄・市川隆一・井戸哲也・伊東 寛・井上大介・伊深和雄・今井弘二・入交芳久・内元清貴・江口智之・呉 鍾煕・大倉拓也・大竹清敬・大堂雅之・小野文枝・笠間貴弘・笠松章史・加藤明人・Callan Daniel・川崎 燥・川村誠治・菅 智茂・菅野敦史・久保田 実・児島正一郎・児島史秀・小竹秀明・斎藤裕紀・坂口 淳・佐々木雅英・佐藤孝平・澤田華織・志賀信泰・sett 司洋三・菅 良太郎・杉林 聖・鈴木隆文・鈴木陽一・隅田英一郎・関根徳彦・新津耕司・沼沢賢一・武岡正裕・辻 宏之・寺西裕一・照井通文・天間克宏・土井美和子・豊嶋守生・鳥澤健太郎・中川拓哉・中澤知輝・永野秀尚・成瀬 康・西永 望・根津ひろみ・萩原雄一朗・橋本安弘・蜂須英和・花土ゆう子・浜田リラ・原 紳介・原 基揚・原井洋明・表 昌佑・廣田悠介・藤田 智・藤原幹生・布施哲治・古川英昭・古澤健太郎・鬼頭 崇・細川瑞彦・松園和久・松田隆志・松村 武・松本 敦・水野麻弥・三浦 周・三浦 龍・宮澤高也・村上 嘉・諸橋 功・安田 哲・山口真吾・山口明哲・山本俊太郎・山本直克・Joachimczak Michal・横田悠右・吉田真紀・吉田悠来・吉村直子・Liu Juan・和氣加奈子・渡邉一世・渡部宏樹
<table>
<thead>
<tr>
<th>日付</th>
<th>版本</th>
<th>更新内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021.3.31</td>
<td>第 1.0 版の公開</td>
<td></td>
</tr>
<tr>
<td>2022.3.30</td>
<td>第 2.0 版の公開</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 章のアーキテクチャをオープンプラットフォームの視点で更新</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 章に ELSI に関するシナリオを 1 つ追加</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 章の要素技術を追加整理</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 章と 6 章を最新の状況を踏まえて更新</td>
<td></td>
</tr>
<tr>
<td>2023.3.31</td>
<td>第 3.0 版の公開</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 章のアーキテクチャについて、オーケストレータやサービスイネーブラ機能の更新とデジタルツイン連携について追記</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 章のシナリオの各種ユースケースを付録1に移動し、シナリオ5を追記</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 章の要素技術を付録2とし、主要な要素技術について解説を追記</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 章に研究成果を社会実装する際の考え方を追記</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 章の国際標準化動向を最新情報に更新</td>
<td></td>
</tr>
</tbody>
</table>